
Dominik Moritz Research Statement
While computers can help us manage data, human judgment and domain expertise is what turns it into understanding.
Meeting the challenges of increasingly large and complex data requires methods that richly integrate the capabilities
of both people and machines. In response to these challenges, my systems research combines methods from visualiza-
tion, data management, human-computer interaction, and programming languages to enable effective methods for data
analysis and communication.

My thesis contributes new languages and models for visualization design that power inter-
active systems for scalable data exploration. Vega-Lite [1] is a high-level declarative lan-
guage for rapidly creating interactive visualizations, while also providing a convenient yet
powerful representation for tools that generate visualizations [5,6]. Draco [2] is a model of
visualization design that extends Vega-Lite with shareable design guidelines, formal rea-
soning over the design space, and visualization recommendation. Falcon [3] and
Pangloss [4] contribute techniques for scalable interaction and exploration of large data vol-
umes by making principled trade-offs among people’s latency tolerance, precomputation,
and the level of approximation. A recurring strategy across these projects is to leverage an
understanding of people’s tasks and capabilities to inform system design and optimization.

Vega-Lite, Draco, and Falcon are available as open-source projects with significant adop-
tion. For example, Vega-Lite has over 100,000 downloads per month on NPM. My systems
are part of an ecosystem of tools (Figure 1) used by the Python and JavaScript data science
communities. By releasing my systems as open source and actively maintaining them, I not
only make them available to analysts but also broaden the scope and impact of my research.
My systems form the basis of many research papers, teaching curricula, and grant propos-
als, both in my group and across universities all over the world.

Vega-Lite: A Language for Interactive Visualization
The vast majority of visualizations are authored through end-user ap-
plications such as spreadsheets or business intelligence tools. Many of these
tools lack consideration of perceptual principles or fall short of fully sup-
porting an expressive range of graphics. To raise the abstraction level of vi-
sualization, I co-created Vega-Lite [1] as a foundation for writing programs
that generate visualizations, for example in the Voyager visualization rec-
ommendation browser [5,6,7]. Vega-Lite is a declarative high-level format
for representing and reasoning about interactive, multi-view visualizations.
By deferring execution concerns to the runtime, designers can focus on de-
sign questions rather than implementation details. The declarative specifi-
cation facilitates systematic enumeration of the design space, retargeting to
different platforms, reuse, and automatic optimization of the execution.

Vega-Lite is designed for statistical graphics and—compared to the lower-
level Vega [15] that it compiles to—trades off general expressivity for orders
of magnitude shorter specifications. A chart is specified as a set of encodings
that map data fields to properties (e.g., color or size) of graphical marks
(e.g., points or bars). By combining these basic building blocks, users can
create an expressive range of graphics (Figure 2). To keep specifications
concise, users can omit low-level details such as axes and scales from their
specifications. The gap between the high-level abstractions and the low-
level execution leads to ambiguity. The Vega-Lite compiler resolves this am-
biguity with carefully designed rules. Vega-Lite uses a declarative model for
visual encoding, providing a balance of expressive power and usable, do-
main-specific constructs. This approach provides an abstraction where
people can rapidly create visualizations in the midst of an analysis session
and where the runtime system can automatically optimize how data is pro-
cessed to render the chart.

In contrast to prior declarative visualization languages, Vega-Lite introduces a view algebra for combining basic plots
into more complex multi-view displays, and a new selection abstraction for declarative specification of interaction
techniques [1]. This novel grammar of interactions has enabled analysts to produce and modify interactive graphics

Figure 2: With Vega-Lite, analysts and designers
can create an expressive range of charts in-
cluding interactive multi-view visualizations.

Figure 1: The systems I devel-
oped as part of my thesis
(highlighted) are part of an
ecosystem of systems that
build on each other. Vega and
Vega-Lite provide a platform
for other applications and
research projects. I contributed
to all systems in this figure.

Vega [15]
Vega-Lite [1]

Fal
co

n [
3]

Dra
co

 [2
]

Alt
air

 [12
]

…

Ju
py

te
rL

ab
 s

up
po

rt

M
ak

in
g

Da
ta

 V
is

ua
l [1

6]

Vo
yag

er
[5,

 6]

…

Dominik Moritz Research Statement 2

with the same ease with which they construct static plots. For example: before Vega-Lite, implementing the crossfil-
tering interaction shown in Figure 3 required a custom library with its own idiosyncratic API. Today, we can define the
interactive chart in Vega-Lite with only 35 lines of JSON.

Vega-Lite has been widely adopted as a language to specify visualizations in the data science community; it is an offi-
cial plotting format in JupyterLab and has been popularized via a Python wrapper called Altair [12]. The Altair team
describes Vega-Lite as “perhaps the best existing candidate for a principled lingua franca of data visualization.” Vega-
Lite has been used in a book for practitioners [16], to teach visualization design (e.g., at UW, Stanford, CMU, Michigan),
and in research projects both as a tool (e.g., for literate programming environments [17]) and as an implementation-
independent language (e.g., for augmented/virtual reality [18]).

Modeling Visualization Design in Draco
To create effective visualizations, designers must consider the data domain and perceptual principles for design. Exist-
ing work has attempted to formalize this design knowledge as logical rules. Even though these rules are informed by
perceptual research, they are engineered by hand, often only cover a few chart types, and are not reused or automati-
cally validated. Moreover, the primary approaches used to apply these rules are now decades old, based on static mod-
els and greedy optimization methods. Rather than building idiosyncratic representations of design knowledge for indi-
vidual systems, I seek to make formal models of design knowledge a shared resource that can be extended, tested,
and provide the base for future research.

I am realizing this vision in Draco [2], a formal model that represents visualizations as sets of logical facts (i.e., speci-
fying choices of dataset, mark type, and visual encoding channels) and expresses best practices and trade-offs among
design guidelines as a collection of hard and soft constraints over these facts (e.g., one might prefer bars to start at
zero). I base the visualization description language on the Vega-Lite grammar and extended it to express characteris-
tics about the data (e.g., cardinality, skew) and task (e.g., summary, value). The constraints express preferences vali-
dated in perceptual experiments and general visualization design best practices. I also developed a machine learning
approach based on learning-to-rank to derive the weights of soft constraints from experimental data.

As a visualization tool, Draco automates the tedious and repetitive parts of authoring visualizations. Draco can auto-
matically synthesize effective designs from partial specifications as queries over the space of visualizations (Figure 4).
I model the input query as additional constraints and use Draco to systematically enumerate the visualizations that do

Figure 3: In Vega-Lite, Repeating a layered histogram with a selection produces coordinated histograms. The lower layer (grey) shows
the unfiltered data while the upper layer (blue) shows the data in the selected range.

Figure 4: Draco compiles a user query to a set of rules and combines them with the existing knowledge base (search space definition +
preferences) into an Answer Set Program (ASP). It then calls the Clingo solver to obtain an optimal solution and translates it to Vega-Lite.

Repeat Column as distance, delay, time

Layer

Upper layer filters by
the selected interval

An interval
selection

Lower layer
shows all dataColumn

Column

Aggregate Rules
Well-formedness Constraints
Expressiveness Constraints

Preference Rules
Weights

Data Schema
Query Constraints

Dataset

Partial Specification

ASP Solver
clingo

Search Space Definition

Vega-Lite Specification

Preference Model

Input:
Output:

Query Definition

+

ASP

ASP mark(bar).

encoding(e0).
channel(e0,x).
type(e0,ordinal).
field(e0,cylinders).

encoding(e1).
channel(e1,y).
type(e1,quant).
field(e1,horsepower).
aggregate(e1,mean).

{
 "data": {"url": "cars.csv"},
 "mark": "bar",
 "encoding": {
 "x": {
 "field": "Cylinders",
 "type": "ordinal"
 },
 "y": {
 "field": "Horsepower",
 "type": "quantitative",
 "aggregate": "mean"
 }
 }
} 3 4 5 6 8

Cylinders

0

50

100

150

M
e

a
n

 o
f

H
o

r
s

e
p

o
w

e
r

ASP VL JSON
data(cars).

encoding(e0).
field(e0,cylinders).

encoding(e1).
field(e1,horsepower).
aggregate(e1,mean).

ASP

Complete Specification

Dominik Moritz Research Statement 3

not violate the hard constraints and find the most preferred visualizations according to the soft constraints. I formalize
the problem of finding appropriate encodings as finding optimal completions of partial inputs, which provides well-
defined semantics. A constraint solver with efficient domain-independent search algorithms replaces the otherwise
necessary custom enumeration and scoring logic.

While Draco can synthesize visualizations in automated design tools, its applications go far beyond. Using constraints,
we can take theoretical design knowledge and express it in a concrete, extensible, and testable form. At the recent
IEEE VIS conference, Draco received the best paper award as it provides a platform for systematic discussions about
visualization design. Draco formally describes trade-offs among design guidelines. Researchers can now experiment
with different trade-offs to improve the science of visualization. They can systematically sample and enumerate the
design space and concretely compare design models. Tool builders can use evolving knowledge bases and benefit from
efficient search algorithms provided by modern constraint solvers. Using the implementation-independent language
of constraints to model design knowledge could accelerate the transfer of research into practical tools.

Scalable Visual Data Analysis with Falcon and Pangloss
As the scale at which analysts need to work has outpaced the tools they use, we are challenged to create new tools that
do not overwhelm people or their computational resources. Vega-Lite and Draco can help address the first issue. With
Vega-Lite, we can describe interactive visualizations for large and complex datasets. With Draco, we can describe de-
sign guidelines for visualizations that guide analysts towards visual encodings that show important patterns and out-
liers regardless of the scale of the data (e.g., [13]). The challenge for the visual analysis system is to manage the amount
of data and computation while remaining responsive.

The Vega-Lite runtime can leverage that specifications and execution are separate to partition the dataflow and push
expensive computations into a scalable backend system [8]. While this approach supports static visualizations well,
current data processing tools are often insufficient for interactive visual analysis. Delays in interactive visualization
exploration systems break perceived correspondence between actions and response, reduce engagement, and lead to
fewer observations made [19]. Poor support for interactive exploration has the potential to skew attention toward
“convenient” and familiar datasets, along with the implied selection biases.

To support interactive analysis at scale, I developed prefetching and
indexing methods for low-latency interaction across linked multi-
view visualizations. I implemented these ideas in Falcon [3], a web-
based visualization system (Figure 5). Falcon models and optimizes
a user’s session with client-side state rather than treating every
query as an independent request. In a session, Falcon leverages the
fact that users typically only interact with a single view at a time.
When the user interacts with a view, Falcon creates an index that
supports interactions with that view. Falcon can calculate the index
from an aggregate query in a database system. As the user moves
the brush in the view, Falcon computes the necessary data for all
other views in constant time. When the user interacts with a differ-
ent view, Falcon reindexes the data, which incurs a short delay. We
accept this trade-off since users are more sensitive to latencies in
brushing interactions than delays after switching views [19]. Falcon
further trades-off initial accuracy of the visualizations for faster
view switching. By applying these principled trade-offs, Falcon sus-
tains real-time interactivity at 50fps for brushing and linking inter-
actions among multiple visualizations of billion-record datasets—
all while running the visualization in a standard browser. Falcon
advances the state of the art in two ways. First, I exploit that not all
interactions are equally latency sensitive to develop user-centered
indexing strategies for a scalable interactive system. Second, unlike
previous systems that required custom data structures, Falcon can
use existing database systems to help create its index.

Prefetching and indexing techniques, like the ones implemented in
Falcon, work best when queries take a few seconds. However, for
petabyte-scale datasets, even scanning a large dataset may take

Figure 5: Visualizations in Falcon showing a dataset of 180
million flights in a web browser. The brushes select short
(top) afternoon flights (middle) that have at most a 10-
minute arrival delay (bottom). The views update in real-
time when the user draws, moves, or resizes any brush.

Dominik Moritz Research Statement 4

minutes and inhibit interactive exploration. In this situation, users are giv-
en a choice: they can wait for the system to complete long-running queries
or rely on an approximation based on a sample of the data. While attractive,
approximate values can be—by their nature—incorrect. In exploratory vi-
sualization, an analyst might see dozens of visualizations; they are almost
guaranteed to encounter a visualization where the errors are outside the
predicted bounds. In my thesis, I address this issue with optimistic visualiza-
tion [4]. In an optimistic visualization system, an analyst begins by con-
structing a fast, approximate query. Computation of the precise results is
placed in the background, allowing analysts to continue their exploration
without watching for updates. When the query is complete, the system in-
vites the analyst to verify their observations (Figure 6). We implement this
approach in Pangloss and discuss design implications [4, 10]. A laboratory
study and three case studies at Microsoft showed that optimistic visualiza-
tion can meet analysts’ needs for both speed and precise results. Optimistic
visualization gives people confidence in working with approximate results
and paves the way towards broader adoption of approximate methods in
exploratory analysts.

Future Research
Analysts want to interact with their tools as if computers were infinitely fast but increasingly large data forces them to
deal with idiosyncratic APIs or accept slowdowns. I envision a future where analysts can turn their data into under-
standing regardless of its structure or size. Systems should automatically ensure that interactive visual analysis inter-
faces are appropriate for the amount and distribution of the data. Fulfilling this vision requires innovations in different
areas of computer science: visualization, data management, HCI, and PL. These traditionally separate concerns inter-
act in complex ways. For example, an expressive visualization algebra that a database can optimize is considered a
grand challenge of scalable visualization. To unify the various components (e.g., automated reasoning, full-stack op-
timization, and making approximation accessible) in a single system, we have to explore the design space and make
principled trade-offs informed by the complementary strengths and weaknesses of computers and people. My future
research will contribute systems that use automated reasoning over domain-specific representations of data analysis
to inform how to efficiently run data science pipelines and enhance our ability to analyze and communicate data.

Automated Reasoning over Visualization Knowledge
While Draco currently supports automated reasoning for individual static charts, a large swath of the visualization de-
sign space remains uncharted. I am working on multiple projects that aim to extend Draco to interactive multi-view
charts and integrate richer task models. To manage Draco’s expansion in scope and complexity, I plan to develop in-
teractive systems that enable quick adaptation of the knowledge base to an organization's needs. By integrating Draco
into existing analysis tools like Altair [12], I can collect user actions to continuously improve Draco’s suggestions.

As we increase automation and provide computational guidance, we also need to preserve a balance between au-
tomation and autonomy of the analyst. Only then can we get the benefits of scale and not lose the benefits of human
expertise and intuition. I want people to stay in control. My systems should always explain their recommendations and
let people override any decisions made by the machines. For example, a design recommender should warn designers
against misleading plots (similar to a linter or spell checker) and propose alternatives with explanations to educate
novices and improve visualization literacy.

Draco draws a new frontier of research that I plan to expand in the coming years. Studying how people use visualiza-
tion models opens opportunities to make models more personal and adapt to specific domains. Draco’s formal model
of visualization design facilitates structured explorations of the design space of visualizations. Studies of human per-
ception can not only inform the visualization model in Draco, but I am particularly excited about going the other way
and using Draco’s reasoning power to identify holes in our knowledge of expressive design. By formalizing the results
of perceptual studies, we can assess whether they are in conflict with or subsumed by existing knowledge. Based on
these results, active learning techniques can inform experiments that close gaps in our knowledge.

Full-Stack Optimization for Interactive Data Systems
Traditionally, the different stages of a data processing pipeline have been optimized as independent components, with
optimizations focused on either the user interface or the data processing system. However, many optimizations—such

Figure 6: In optimistic visualization, users can
immediately work with approximate results
(top) while precise answers are computed in
the background. When results arrive, they can
check their observations (bottom).

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90
Age

0

2,000,000

4,000,000

6,000,000

8,000,000

Po
pu

la
tio

n

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90
Age

0

2,000,000

4,000,000

6,000,000

Po
pu

la
tio

n

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90
Age

0

2,000,000

4,000,000

6,000,000

8,000,000

Po
pu

la
tio

n

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90
Age

0

2,000,000

4,000,000

6,000,000

Po
pu

la
tio

n

Dominik Moritz Research Statement 5

as prefetching and indexes per view in Falcon—are born out of a holistic consideration of front-end and back-end
concerns together. I plan to develop and evaluate data science systems that integrate various optimization strategies
such as indexing, prefetching, perceptually motivated cost models, and algorithms that optimally place data and com-
putation on the client or the server [8]. By leveraging ambiguity and reasoning about declarative specifications of the
data transformations and visual encodings such as Vega-Lite, systems could apply the optimizations automatically.

An essential aspect of this research is to integrate various optimizations into one system so that we can systematically
evaluate design trade-offs. One of these trade-offs is to choose appropriate sampling strategies, data transformations,
and visual encodings based on the analyst’s goals. Data-intensive analysis routinely produces perceptually over-
whelming visualizations and exceeds the capabilities of existing visual analytics tools (e.g., a scatterplot with a billion
points). A recommendation system like Draco can suggest a scalable alternative (e.g., a heatmap) informed by details
about the data that are typically not relevant to the analyst’s goals (e.g., the data distribution can affect querying). The
analyst can then interact with their data without having to worry about idiosyncrasies of the querying system.

To evaluate how new systems perform in practice, I will continue to seek out collaborations with data-driven domain
scientists (e.g., [14]). I will use these interactions to gain insights into what tools, languages, and interactive systems
are likely to have the greatest impact.

Living with Approximation and Uncertainty
As we continue to integrate more automation into analysis and process data in complex pipelines with many steps, the
provenance of data becomes opaque to the analyst. Analysts often do not know how their data has been processed and
how errors might have accumulated. As a result, the quality and uncertainty in data and derived models becomes un-
clear. I want to develop means to track the provenance of data and convey uncertainty in complex pipelines. For exam-
ple, an interactive analysis system could automatically suggest appropriate uncertainty visualizations or identify po-
tentially confounding factors. With improved means to handle uncertainty—in particular ways to limit the uncertainty
about uncertainty—analysts can better assess data quality and may be satisfied with less data.

Even after analysis, data scientists need to accurately present the uncertainty in their models to decision makers. Jour-
nalists often credit effective communication of uncertainty of quantitative information as one of the biggest challenges
they face. I also want to explore how insights from uncertainty visualization in analysis—like the ones I used during
my Ph.D. [4, 10, 9]—can inform how we communicate uncertainty to the general public. I believe that by raising visu-
alization and data literacy around uncertainty, we might help people become more informed and engaged citizens.

References
1. Vega-Lite: a Grammar of Interactive Graphics. Arvind Satyanarayan, Dominik Moritz, Kanit Wongsuphasawat, Jeffrey Heer. InfoVis 2016. Best Paper Award.

https://vega.github.io/vega-lite/
2. Formalizing Visualization Design Knowledge as Constraints: Actionable and Extensible Models in Draco. Dominik Moritz, Chenglong Wang, Greg L. Nelson,  

Halden Lin, Adam M. Smith, Bill Howe, Jeffrey Heer. InfoVis 2018. Best Paper Award
3. Falcon: Balancing Interactive Latency and Resolution Sensitivity for Scalable Linked Visualizations, Dominik Moritz, Bill Howe, Jeffrey Heer. CHI 2019.
4. Trust, but Verify: Optimistic Visualizations of Approximate Queries for Exploring Big Data. Dominik Moritz, Danyel Fisher, Bolin Ding, Chi Wang. CHI 2017.
5. Voyager: Exploratory Analysis via Faceted Browsing of Visualization Recommendations. Kanit Wongsuphasawat, Dominik Moritz, Anushka Anand, Jock Mackinlay,

Bill Howe, Jeffrey Heer. InfoVis 2015. Invited to SIGGRAPH 2016 as 1 of 4 top TVCG papers.
6. Voyager 2: Augmenting Visual Analysis with Partial View Specifications. Kanit Wongsuphasawat, Zening Qu, Dominik Moritz, Riley Chang, Felix Ouk, Anushka Anand,

Jock Mackinlay, Bill Howe, Jeffrey Heer. ACM SIGCHI 2017.
7. Towards A General-Purpose Query Language for Visualization Recommendation. Kanit Wongsuphasawat, Dominik Moritz, Anushka Anand, Jock Mackinlay, Bill

Howe, Jeffrey Heer. HILDA at SIGMOD 2016.
8. Dynamic Client-Server Optimization for Scalable Interactive Visualization on the Web. Dominik Moritz, Jeffrey Heer, and Bill Howe. DSIA at VIS 2015.
9. Value-Suppressing Uncertainty Palettes. Michael Correll, Dominik Moritz, Jeffrey Heer. CHI 2018.
10. What Users Don't Expect about Exploratory Data Analysis on AQP Systems. Dominik Moritz, Danyel Fisher. HILDA at SIGMOD 2017.
11. Lessons from Pangloss: User Encounters with Uncertainty. Dominik Moritz, Danyel Fisher. Uncertainty workshop at CHI 2017.
12. Altair: Interactive Statistical Visualizations for Python. Jacob VanderPlas, Brian E. Granger, Jeffrey Heer, Dominik Moritz, Kanit Wongsuphasawat, et. al. JOSS 2018
13. Visualizing a Million Time Series with the Density Line Chart. Dominik Moritz, Danyel Fisher. arXiv 2018.
14. Exploring neighborhoods in large metagenome assembly graphs reveals hidden sequence diversity. C. Titus Brown, Dominik Moritz, Michael O'Brien, Felix Reidl,

Taylor Reiter, Blair Sullivan. bioRxiv 2018.
15. Reactive Vega. Arvind Satyanarayan, Ryan Russell, Jane Hoffwell, Jeffrey Heer. InfoVis 2015.
16. Making Data Visual. Danyel Fisher, Miriah Meyer. O’Reilly Press 2018.
17. Design Exposition with Literate Visualization. Jo Wood, Alexander Kachkaev and Jason Dykes. Infovis 2018. Best Paper Honourable Mention
18. A Toolkit for Building Immersive Data Visualizations. Ronell Sicat, et.al. Infovis 2018.
19. The Effects of Interactive Latency on Exploratory Visual Analysis. Zhicheng Liu, Jeffrey Heer. Infovis 2014

https://vega.github.io/vega-lite/
https://vega.github.io/vega-lite/

