
Dominik Moritz Research Statement 
While computers can help us manage data, human judgment and domain expertise is what turns it into understanding. 
Meeting the challenges of increasingly large and complex data requires methods that richly integrate the capabilities 
of both people and machines. In response to these challenges, my systems research combines methods from visualiza-
tion, data management, human-computer interaction, and programming languages to enable effective methods for data 
analysis and communication. 

My thesis contributes new languages and models for visualization design that power inter-
active systems for scalable data exploration. Vega-Lite [1] is a high-level declarative lan-
guage for rapidly creating interactive visualizations, while also providing a convenient yet 
powerful representation for tools that generate visualizations [5,6]. Draco [2] is a model of 
visualization design that extends Vega-Lite with shareable design guidelines, formal rea-
soning over the design space, and visualization recommendation. Falcon  [3] and 
Pangloss [4] contribute techniques for scalable interaction and exploration of large data vol-
umes by making principled trade-offs among people’s latency tolerance, precomputation, 
and the level of approximation. A recurring strategy across these projects is to leverage an 
understanding of people’s tasks and capabilities to inform system design and optimization.  

Vega-Lite, Draco, and Falcon are available as open-source projects with significant adop-
tion. For example, Vega-Lite has over 100,000 downloads per month on NPM. My systems 
are part of an ecosystem of tools (Figure 1) used by the Python and JavaScript data science 
communities. By releasing my systems as open source and actively maintaining them, I not 
only make them available to analysts but also broaden the scope and impact of my research. 
My systems form the basis of many research papers, teaching curricula, and grant propos-
als, both in my group and across universities all over the world. 

Vega-Lite: A Language for Interactive Visualization 
The vast majority of visualizations are authored through end-user ap-
plications such as spreadsheets or business intelligence tools. Many of these 
tools lack consideration of perceptual principles or fall short of fully sup-
porting an expressive range of graphics. To raise the abstraction level of vi-
sualization, I co-created Vega-Lite [1] as a foundation for writing programs 
that generate visualizations, for example in the Voyager visualization rec-
ommendation browser [5,6,7]. Vega-Lite is a declarative high-level format 
for representing and reasoning about interactive, multi-view visualizations. 
By deferring execution concerns to the runtime, designers can focus on de-
sign questions rather than implementation details. The declarative specifi-
cation facilitates systematic enumeration of the design space, retargeting to 
different platforms, reuse, and automatic optimization of the execution.  

Vega-Lite is designed for statistical graphics and—compared to the lower-
level Vega [15] that it compiles to—trades off general expressivity for orders 
of magnitude shorter specifications. A chart is specified as a set of encodings 
that map data fields to properties (e.g., color or size) of graphical marks 
(e.g., points or bars). By combining these basic building blocks, users can 
create an expressive range of graphics (Figure 2). To keep specifications 
concise, users can omit low-level details such as axes and scales from their 
specifications. The gap between the high-level abstractions and the low-
level execution leads to ambiguity. The Vega-Lite compiler resolves this am-
biguity with carefully designed rules. Vega-Lite uses a declarative model for 
visual encoding, providing a balance of expressive power and usable, do-
main-specific constructs. This approach provides an abstraction where 
people can rapidly create visualizations in the midst of an analysis session 
and where the runtime system can automatically optimize how data is pro-
cessed to render the chart.  

In contrast to prior declarative visualization languages, Vega-Lite introduces a view algebra for combining basic plots 
into more complex multi-view displays, and a new selection abstraction for declarative specification of interaction 
techniques [1]. This novel grammar of interactions has enabled analysts to produce and modify interactive graphics 

Figure 2: With Vega-Lite, analysts and designers 
can create an expressive range of charts in-
cluding interactive multi-view visualizations.

Figure 1: The systems I devel-
oped as part of my thesis 
(highlighted) are part of an 
ecosystem of systems that 
build on each other. Vega and 
Vega-Lite provide a platform 
for other applications and 
research projects. I contributed 
to all systems in this figure. 
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with the same ease with which they construct static plots. For example: before Vega-Lite, implementing the crossfil-
tering interaction shown in Figure 3 required a custom library with its own idiosyncratic API. Today, we can define the 
interactive chart in Vega-Lite with only 35 lines of JSON. 

Vega-Lite has been widely adopted as a language to specify visualizations in the data science community; it is an offi-
cial plotting format in JupyterLab and has been popularized via a Python wrapper called Altair [12]. The Altair team 
describes Vega-Lite as “perhaps the best existing candidate for a principled lingua franca of data visualization.” Vega-
Lite has been used in a book for practitioners [16], to teach visualization design (e.g., at UW, Stanford, CMU, Michigan), 
and in research projects both as a tool (e.g., for literate programming environments [17]) and as an implementation-
independent language (e.g., for augmented/virtual reality [18]).  

Modeling Visualization Design in Draco 
To create effective visualizations, designers must consider the data domain and perceptual principles for design. Exist-
ing work has attempted to formalize this design knowledge as logical rules. Even though these rules are informed by 
perceptual research, they are engineered by hand, often only cover a few chart types, and are not reused or automati-
cally validated. Moreover, the primary approaches used to apply these rules are now decades old, based on static mod-
els and greedy optimization methods. Rather than building idiosyncratic representations of design knowledge for indi-
vidual systems, I seek to make formal models of design knowledge a shared resource that can be extended, tested, 
and provide the base for future research.  

I am realizing this vision in Draco [2], a formal model that represents visualizations as sets of logical facts (i.e., speci-
fying choices of dataset, mark type, and visual encoding channels) and expresses best practices and trade-offs among 
design guidelines as a collection of hard and soft constraints over these facts (e.g., one might prefer bars to start at 
zero). I base the visualization description language on the Vega-Lite grammar and extended it to express characteris-
tics about the data (e.g., cardinality, skew) and task (e.g., summary, value). The constraints express preferences vali-
dated in perceptual experiments and general visualization design best practices. I also developed a machine learning 
approach based on learning-to-rank to derive the weights of soft constraints from experimental data. 

As a visualization tool, Draco automates the tedious and repetitive parts of authoring visualizations. Draco can auto-
matically synthesize effective designs from partial specifications as queries over the space of visualizations (Figure 4). 
I model the input query as additional constraints and use Draco to systematically enumerate the visualizations that do 

Figure 3: In Vega-Lite, Repeating a layered histogram with a selection produces coordinated histograms. The lower layer (grey) shows 
the unfiltered data while the upper layer (blue) shows the data in the selected range. 

Figure 4: Draco compiles a user query to a set of rules and combines them with the existing knowledge base (search space definition + 
preferences) into an Answer Set Program (ASP). It then calls the Clingo solver to obtain an optimal solution and translates it to Vega-Lite.
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not violate the hard constraints and find the most preferred visualizations according to the soft constraints. I formalize 
the problem of finding appropriate encodings as finding optimal completions of partial inputs, which provides well-
defined semantics. A constraint solver with efficient domain-independent search algorithms replaces the otherwise 
necessary custom enumeration and scoring logic. 

While Draco can synthesize visualizations in automated design tools, its applications go far beyond. Using constraints, 
we can take theoretical design knowledge and express it in a concrete, extensible, and testable form. At the recent 
IEEE VIS conference, Draco received the best paper award as it provides a platform for systematic discussions about 
visualization design. Draco formally describes trade-offs among design guidelines. Researchers can now experiment 
with different trade-offs to improve the science of visualization. They can systematically sample and enumerate the 
design space and concretely compare design models. Tool builders can use evolving knowledge bases and benefit from 
efficient search algorithms provided by modern constraint solvers. Using the implementation-independent language 
of constraints to model design knowledge could accelerate the transfer of research into practical tools. 

Scalable Visual Data Analysis with Falcon and Pangloss 
As the scale at which analysts need to work has outpaced the tools they use, we are challenged to create new tools that 
do not overwhelm people or their computational resources. Vega-Lite and Draco can help address the first issue. With 
Vega-Lite, we can describe interactive visualizations for large and complex datasets. With Draco, we can describe de-
sign guidelines for visualizations that guide analysts towards visual encodings that show important patterns and out-
liers regardless of the scale of the data (e.g., [13]). The challenge for the visual analysis system is to manage the amount 
of data and computation while remaining responsive. 

The Vega-Lite runtime can leverage that specifications and execution are separate to partition the dataflow and push 
expensive computations into a scalable backend system [8]. While this approach supports static visualizations well, 
current data processing tools are often insufficient for interactive visual analysis. Delays in interactive visualization 
exploration systems break perceived correspondence between actions and response, reduce engagement, and lead to 
fewer observations made [19]. Poor support for interactive exploration has the potential to skew attention toward 
“convenient” and familiar datasets, along with the implied selection biases. 

To support interactive analysis at scale, I developed prefetching and 
indexing methods for low-latency interaction across linked multi-
view visualizations. I implemented these ideas in Falcon [3], a web-
based visualization system (Figure 5). Falcon models and optimizes 
a user’s session with client-side state rather than treating every 
query as an independent request. In a session, Falcon leverages the 
fact that users typically only interact with a single view at a time. 
When the user interacts with a view, Falcon creates an index that 
supports interactions with that view. Falcon can calculate the index 
from an aggregate query in a database system. As the user moves 
the brush in the view, Falcon computes the necessary data for all 
other views in constant time. When the user interacts with a differ-
ent view, Falcon reindexes the data, which incurs a short delay. We 
accept this trade-off since users are more sensitive to latencies in 
brushing interactions than delays after switching views [19]. Falcon 
further trades-off initial accuracy of the visualizations for faster 
view switching. By applying these principled trade-offs, Falcon sus-
tains real-time interactivity at 50fps for brushing and linking inter-
actions among multiple visualizations of billion-record datasets—
all while running the visualization in a standard browser. Falcon 
advances the state of the art in two ways. First, I exploit that not all 
interactions are equally latency sensitive to develop user-centered 
indexing strategies for a scalable interactive system. Second, unlike 
previous systems that required custom data structures, Falcon can 
use existing database systems to help create its index.  

Prefetching and indexing techniques, like the ones implemented in 
Falcon, work best when queries take a few seconds. However, for 
petabyte-scale datasets, even scanning a large dataset may take 

Figure 5: Visualizations in Falcon showing a dataset of 180 
million flights in a web browser. The brushes select short 
(top) afternoon flights (middle) that have at most a 10-
minute arrival delay (bottom). The views update in real-
time when the user draws, moves, or resizes any brush.
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minutes and inhibit interactive exploration. In this situation, users are giv-
en a choice: they can wait for the system to complete long-running queries 
or rely on an approximation based on a sample of the data. While attractive, 
approximate values can be—by their nature—incorrect. In exploratory vi-
sualization, an analyst might see dozens of visualizations; they are almost 
guaranteed to encounter a visualization where the errors are outside the 
predicted bounds. In my thesis, I address this issue with optimistic visualiza-
tion [4]. In an optimistic visualization system, an analyst begins by con-
structing a fast, approximate query. Computation of the precise results is 
placed in the background, allowing analysts to continue their exploration 
without watching for updates. When the query is complete, the system in-
vites the analyst to verify their observations (Figure 6). We implement this 
approach in Pangloss and discuss design implications [4, 10]. A laboratory 
study and three case studies at Microsoft showed that optimistic visualiza-
tion can meet analysts’ needs for both speed and precise results. Optimistic 
visualization gives people confidence in working with approximate results 
and paves the way towards broader adoption of approximate methods in 
exploratory analysts. 

Future Research 
Analysts want to interact with their tools as if computers were infinitely fast but increasingly large data forces them to 
deal with idiosyncratic APIs or accept slowdowns. I envision a future where analysts can turn their data into under-
standing regardless of its structure or size. Systems should automatically ensure that interactive visual analysis inter-
faces are appropriate for the amount and distribution of the data. Fulfilling this vision requires innovations in different 
areas of computer science: visualization, data management, HCI, and PL. These traditionally separate concerns inter-
act in complex ways. For example, an expressive visualization algebra that a database can optimize is considered a 
grand challenge of scalable visualization. To unify the various components (e.g., automated reasoning, full-stack op-
timization, and making approximation accessible) in a single system, we have to explore the design space and make 
principled trade-offs informed by the complementary strengths and weaknesses of computers and people. My future 
research will contribute systems that use automated reasoning over domain-specific representations of data analysis 
to inform how to efficiently run data science pipelines and enhance our ability to analyze and communicate data. 

Automated Reasoning over Visualization Knowledge 
While Draco currently supports automated reasoning for individual static charts, a large swath of the visualization de-
sign space remains uncharted. I am working on multiple projects that aim to extend Draco to interactive multi-view 
charts and integrate richer task models. To manage Draco’s expansion in scope and complexity, I plan to develop in-
teractive systems that enable quick adaptation of the knowledge base to an organization's needs. By integrating Draco 
into existing analysis tools like Altair [12], I can collect user actions to continuously improve Draco’s suggestions. 

As we increase automation and provide computational guidance, we also need to preserve a balance between au-
tomation and autonomy of the analyst. Only then can we get the benefits of scale and not lose the benefits of human 
expertise and intuition. I want people to stay in control. My systems should always explain their recommendations and 
let people override any decisions made by the machines. For example, a design recommender should warn designers 
against misleading plots (similar to a linter or spell checker) and propose alternatives with explanations to educate 
novices and improve visualization literacy.  

Draco draws a new frontier of research that I plan to expand in the coming years. Studying how people use visualiza-
tion models opens opportunities to make models more personal and adapt to specific domains. Draco’s formal model 
of visualization design facilitates structured explorations of the design space of visualizations. Studies of human per-
ception can not only inform the visualization model in Draco, but I am particularly excited about going the other way 
and using Draco’s reasoning power to identify holes in our knowledge of expressive design. By formalizing the results 
of perceptual studies, we can assess whether they are in conflict with or subsumed by existing knowledge. Based on 
these results, active learning techniques can inform experiments that close gaps in our knowledge. 

Full-Stack Optimization for Interactive Data Systems 
Traditionally, the different stages of a data processing pipeline have been optimized as independent components, with 
optimizations focused on either the user interface or the data processing system. However, many optimizations—such 

Figure 6: In optimistic visualization, users can 
immediately work with approximate results 
(top) while precise answers are computed in 
the background. When results arrive, they can 
check their observations (bottom).
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as prefetching and indexes per view in Falcon—are born out of a holistic consideration of front-end and back-end 
concerns together. I plan to develop and evaluate data science systems that integrate various optimization strategies 
such as indexing, prefetching, perceptually motivated cost models, and algorithms that optimally place data and com-
putation on the client or the server [8]. By leveraging ambiguity and reasoning about declarative specifications of the 
data transformations and visual encodings such as Vega-Lite, systems could apply the optimizations automatically.  

An essential aspect of this research is to integrate various optimizations into one system so that we can systematically 
evaluate design trade-offs. One of these trade-offs is to choose appropriate sampling strategies, data transformations, 
and visual encodings based on the analyst’s goals. Data-intensive analysis routinely produces perceptually over-
whelming visualizations and exceeds the capabilities of existing visual analytics tools (e.g., a scatterplot with a billion 
points). A recommendation system like Draco can suggest a scalable alternative (e.g., a heatmap) informed by details 
about the data that are typically not relevant to the analyst’s goals (e.g., the data distribution can affect querying). The 
analyst can then interact with their data without having to worry about idiosyncrasies of the querying system.  

To evaluate how new systems perform in practice, I will continue to seek out collaborations with data-driven domain 
scientists (e.g., [14]). I will use these interactions to gain insights into what tools, languages, and interactive systems 
are likely to have the greatest impact. 

Living with Approximation and Uncertainty 
As we continue to integrate more automation into analysis and process data in complex pipelines with many steps, the 
provenance of data becomes opaque to the analyst. Analysts often do not know how their data has been processed and 
how errors might have accumulated. As a result, the quality and uncertainty in data and derived models becomes un-
clear. I want to develop means to track the provenance of data and convey uncertainty in complex pipelines. For exam-
ple, an interactive analysis system could automatically suggest appropriate uncertainty visualizations or identify po-
tentially confounding factors. With improved means to handle uncertainty—in particular ways to limit the uncertainty 
about uncertainty—analysts can better assess data quality and may be satisfied with less data.  

Even after analysis, data scientists need to accurately present the uncertainty in their models to decision makers. Jour-
nalists often credit effective communication of uncertainty of quantitative information as one of the biggest challenges 
they face. I also want to explore how insights from uncertainty visualization in analysis—like the ones I used during 
my Ph.D. [4, 10, 9]—can inform how we communicate uncertainty to the general public. I believe that by raising visu-
alization and data literacy around uncertainty, we might help people become more informed and engaged citizens. 
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