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While computers can help us manage data, human judgment and domain expertise is what turns

it into understanding. Meeting the challenges of increasingly large and complex data requires

methods that richly integrate the capabilities of both people and machines. In response to these

challenges, this thesis contributes new languages and models for visualization design that power

interactive systems for scalable data analysis.

In these languages, users can be imprecise about low-level design decisions as the system leverages

this ambiguity to optimize the visual design and necessary computation. Vega-Lite is a high-level

declarative language for rapidly creating interactive visualizations, while also providing a convenient

yet powerful representation for tools that generate visualizations. Vega-Lite uses smart defaults to

�ll in low-level details to create e�ective designs. The declarative design facilitates optimization

of the required data processing. Draco is a model of visualization design that extends Vega-



Lite with shareable design guidelines, formal reasoning over the design space, and visualization

recommendation. We show how we can use Draco to construct increasingly sophisticated automated

visualization design and recommendation systems, including systems based on weights learned

directly from the results of graphical perception experiments.

We take a user-centric perspective on systems for scalable exploratory analysis. Considering both

the backend and frontend concerns, we present Falcon, an interactive cross�lter application where

users can interact with billions of records without latencies that negatively a�ect their exploration.

To scale beyond billions of records, we present Pangloss, a visual analysis system that uses

approximate query processing but provides eventual guarantees using Optimistic Visualization. In

this concept, we treat approximate query processing as a user experience problem to address users’

primary concern: trust in their exploration results. Falcon and Pangloss contribute techniques for

scalable interaction and exploration of large data volumes by making principled trade-o�s among

people’s latency tolerance, precomputation, and the level of approximation.
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1 Introduction

Visual representations of abstract data are often critical to making and understanding new insights.

They allow viewers to see the magnitude of data, draw comparisons, and reveal patterns or trends.

Visualizations can improve communication of results (explanatory visualization) and help analysts

understand and discover patterns in data (exploratory visualization) [208]. This is possible because

visual representations can leverage the powerful capabilities of the human visual system.

The introduction of user interfaces and graphics software has enhanced our ability to analyze data

interactively and look at it from di�erent angles to reveal patterns [159, 228]. Computers can

process data faster, more accurately and more reliably than any human. With vast amounts of data

being generated, collected, and stored, data visualization with computers has become an essential

tool for data scientists in businesses, government agencies, and science.

However, existing programming tools used to create visualizations are typically designed for

manual authoring without computational support for following established practices. This lack of

integration leaves good design a responsibility of the human designer. To address this problem,

we need to design new tools where people and machines can meaningfully participate in the

visualization process.

Computers have unique and powerful capabilities for helping people interact with data. However,

they also have limited speed at which they can deliver requested information. The computer

hardware we use improves slower than the amount of data increases that analysts want to store
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and visualize [215]. One example is sky surveys in modern astronomy. Since 2000, the Sloan Digital

Sky Survey (SDSS) [1] has collected information on hundreds of millions of stars and galaxies. In

early 2018, the European Space Agency released a survey of 1.7 billion sources from the GAIA space

telescope [22]. The LSST, a ground-telescope which is planned to go online in 2019, will collect 32

trillion observations of 40 billion objects [99]. These orders of magnitude larger datasets challenge

the tools data analysts use today—and by extension, the people who build these tools.

Modern data warehouses often include tables with billions or more records. Most visual analysis

tools are not designed to work at this scale, let alone support real-time interaction [109]. As the

amounts of data that we wish to analyze continues to grow rapidly, our tools rarely keep up with

this development. With large data volumes and demanding latency requirements, data processing

systems for interactive visualization run against hardware limitations. Meeting the challenges of

perceptual and interactive scalability is therefore not only a matter of engineering more powerful

systems but requires a deep understanding of the capabilities and limitations of both the people

and the machine.

1.1 Thesis Statement

In this thesis, we hypothesize that high-level visualization languages designed for both human

authoring and programmatic generation facilitate systematic exploration of the design space, reuse

across computing environments, and automatic optimization. Based on these representations,

we can create formal models of design to build shared and extensible knowledge bases of design

practices. These models facilitate smart design assistants. Combining the strengths of people

and machines, and co-designing the data processing systems and their user experience, enables

interactive visualizations of billion-record datasets.
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 "data": {"url": "cars.csv"},
 "mark": "bar",
 "encoding": {
  "x": {
   "field": "Cylinders",
   "type": "ordinal"
  },
  "y": {
   "field": "Horsepower",
   "type": "quantitative",
   "aggregate": "mean"
  }
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Figure 1.1: Overview of the contributions of this thesis (from top-left to bottom-right): Vega-Lite,

Draco, Falcon, and Optimistic Visualization.

1.2 Thesis Contributions

To support the hypothesis, this thesis contributes new languages and models for visualization

design and interactive systems for scalable visual analysis. It makes contributions in four categories

illustrated in Figure 1.1.

The design of a grammar for interactive multi-view graphics for both people and machines.

Visualization grammars are a popular way of specifying charts. They describe a combinatorial

space of possible graphics as a composition of a few building blocks. Because they are declarative,

designers can focus on design questions and defer execution concerns to a runtime. Grammars

can raise the level of abstraction by omitting low-level details that are �lled in by smart defaults.
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These high-level grammars enable rapid authoring of charts making them especially attractive

for data exploration. Most visualizations today are authored through end-user applications but

many of the existing languages are designed to be written by people. Moreover, existing grammars

provide only limited support for interactivity. To address these limitations, we present Vega-Lite,

a declarative visualization grammar (Figure 1.1 top-left, chapter 3) and accompanying compiler.

Vega-Lite expresses visualizations in a declarative format that can easily be manipulated with

computers. These speci�cations facilitate systematic enumeration of the design space, reuse across

di�erent platforms and devices, and automatic optimization of the execution and presentation.

Vega-Lite also introduces a view algebra for combining basic plots into multi-view displays, and a

new selection abstraction to declaratively specify interaction techniques.

A formal model to specify visualizations and a knowledge base of visualization design.

Vega-Lite is designed for statistical graphics. It enables a rich (yet constrained) design space with

a grammar �t for human and machine speci�cation. However, the choice of data transformations

and visual encodings require design expertise. Mistakes in these choices can be costly; people may

overlook important features in their data or derive false insights. Good designs can prevent these

mistakes and make designs more appealing and easier to read. Vega-Lite’s defaults can help with

good designs. However, Vega-Lite scopes ambiguity to low-level details of scales, axes, legends,

and data transformations. This scoping leaves high-level design decisions to the designer. We lack

systems that leverage ambiguity about high-level encoding decisions to guide people towards good

designs. In response, we present Draco, a formal model to specify visualizations and a knowledge

base of visualization design as a set of constraints and associated weights (Figure 1.1 top-right,

chapter 4). Draco makes design decisions based on the constraints that are speci�ed by experts

or learned from data. An end-user evaluates Draco’s recommendations and thus incrementally

re�nes their visual encoding. Draco’s constraints and associated weights enable formal reasoning

and reuse across di�erent tools. They facilitate the development of visualization recommendation

systems that assist users in improving their designs.
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An interactive system that balances interactive latency and resolution sensitivity for scalable

linked visualizations.

Analysts often wish to work with increasingly large datasets. Many of today’s visualization systems

only work with in-memory data or resort to querying scalable database systems. While the latter

support massive datasets, query response times often exceed what is considered interactive. It is

crucial to maintain interactivity when exploring data to enable data analysis at “rates resonant

with the pace of human thought” [83, 91]. Traditionally, visualization system design has often

taken a modular approach where the visualization pipeline is divided into separate and independent

components. We discuss the design space and ultimately �nd a lot of e�ort has gone into optimizing

the data processing systems but there has been little consideration of the corresponding user

interfaces. While this separation of concerns has been one of the factors that contributed to the

success of (in particular relational) databases, this approach overlooks important problems but

also potential for optimization. In this thesis we take a holistic approach to system design and

contribute Falcon (Figure 1.1 bottom-left, chapter 5). Falcon is a web-based system that supports

interactions across linked multi-view visualizations of large datasets. Falcon uses smart prefetching

and indexing to support analytics over billions of records without expensive precomputation. In

particular, we show specialized algorithms and data structures that support real-time brushing

and linking. Falcon builds on the insight from prior work that while delays cause analysts to lose

their thought process, some operations are more latency sensitive than others [122]. We leverage

this insight and prioritize latency sensitive interactions.

A framework for reliable exploration of approximate results.

As data sizes keep growing rapidly, even scanning a large dataset may take minutes and inhibit

interactive exploration. Luckily, analysts can often make the same insights on a sample of the

data if the system computes approximations [3, 62]. The error of an approximation depends

only on the size of the sample and not the size of the data it was drawn from; additional data

has diminishing returns. There are several well-known challenges with approximations. The

most critical of these is trust: approximate values can be—by their nature—incorrect. In an
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exploratory visualization, an analyst might see dozens of visualizations that are accurate most

of the time. With enough visualizations they are almost guaranteed to encounter a visualization

where the errors are outside the predicted bounds. In this thesis, we present Pangloss, a visual

analysis system that uses approximate results but provides eventual guarantees using optimistic

visualization (Figure 1.1 bottom-right, chapter 6). Optimistic visualization produces approximate

results quickly, and computes precise results in the background. The analyst can make observations

on the approximation, and later check them against the precise results. It has the bene�ts of both

approximation and computing results o�ine: analysts can work at interactive speeds and rely on

their �ndings.

1.3 Perceptual and Interactive Scalability

Many datasets today are too large for the tools we use. For example, today’s screens have millions

of pixels, but datasets have billions or more records; not every record can be rendered. Even if we

could show every point, the visual representations overwhelm viewers. This example illustrates

the two main challenges that analysts face. First, a visual representation that shows every record

as its own mark quickly overwhelms our visual system; we call this problem perceptual scalability.

The solution is to reduce the data in a way that preserves visual cues to relevant patterns. Second,

for very large data the reduction itself can overwhelm the data processing system; we call this the

problem of interactive scalability.

The systems we propose in this thesis address di�erent issues that a data analysts may encounter

when working with increasingly large data. Figure 1.2 gives an overview of how this thesis addresses

perceptual and interactive scalability issues. Vega-Lite and Draco are useful even for small data and

Vega-Lite has already become a popular tool in the JavaScript and Python data science communities.

Even though we have only implemented prototypes, they can address perceptual and interactive

scalability. In subsection 4.6.4, we outline how Draco can be extended to use ambiguities in

speci�cations and recommend scalable alternatives to common chart types. In subsection 3.5.3,
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Figure 1.2: Overview at which data sizes Vega-Lite, Draco, Falcon, and Pangloss address the issues

of perceptual and interactive scalability. Draco handles small data and lays the groundwork for

supporting big data.

we discuss how our compiler already leverages the high-level declarative design of Vega-Lite

to automatically optimize the execution and remove redundant or unnecessary computation. In

subsection 3.7.2, we discuss a prototype of a runtime system that moves expensive computation to

a scalable backend system. However, this prototype sends a query for every interaction incurring

latencies incompatible with some interactions [122].

We provide a solution for a common interaction pattern in Falcon. With Falcon running in a modern

browser, analysts can brush and link between one-dimensional and two-dimensional histograms of

millions or tens of millions of records. Falcon can move heavy computation to a data management

system and scale up to billions of records. Eventually, these data management systems may use

approximation to save resources or handle even larger datasets. Optimistic visualization then

addresses the problem that approximate results are not reliable.
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1.4 Prior Publications and Authorship

Although I am the principal author of the research in this dissertation, much of the work was done

collaboration with my advisors Je�rey Heer, Bill Howe, my mentor at Microsoft Research Danyel

Fisher, and my colleagues at the Interactive Data Lab and the Database Group at the University of

Washington. Vega-Lite was published at IEEE VIS 2016 [177] as joint work with Arvind Satyanarayan

who contributed selections as interactive primitives and Kanit “Ham” Wongsuphasawat who I

worked with to design and implement visual encodings. Optimistic visualization and Pangloss

were published at ACM CHI 2017, and HILDA at ACM SIGMOD 2017 [133, 134] after an internship

at Microsoft Research. During the internship, Danyel Fisher and I closely collaborated with Bolin

Ding and Chi Wang from the Data Management, Exploration and Mining (DMX) group. Draco was

published at IEEE VIS 2018 [137] as the result of a collaboration with Chenglong Wang from the

Programming Languages and Software Engineering group at UW. Greg Nelson and I developed an

earlier prototype as part of a constraint programming class with Alan Borning. Halden Lin helped

develop user interfaces and collect data for the system. Draco is heavily in�uenced by my earlier

work with Kanit Wongsuphasawat including CompassQL [223], and Voyager [224, 225]. In this

thesis, I use the �rst person plural to re�ect my collaborators’ contributions.



9

2 Background and Related Work

This thesis builds on prior work in data visualization, human computer interaction, data manage-

ment, and programming languages. Here, we review relevant work framing the thesis. Related

work speci�c to a particular chapter is introduced before each chapter.

2.1 Information Visualization

In the 18th and 19th century William Playfair [162], Florence Nightingale, John Snow, and Charles

Minard pioneered the use of quantitative graphs that can be understood and enable viewers to grasp

the relevant information quickly; they often used visualization to make something more accessible

to the public. In the second half of the 20th century Jacques Bertin [15], a French cartographer,

provided a theoretic foundation of information visualization. He methodically examined graphical

representations and developed categorizations of di�erent data types (e.g., numerical, categorical,

and temporal) and encodings (e.g., retinal variables such as color, position, size, and shape). Most of

Bertin’s design principles were based on his own judgments but were later con�rmed and extended

with rigorous experiments. Cleveland and McGill [41] conducted experiments on the e�ectiveness

of di�erent visual encodings for conveying di�erent data types. From these experiments we can

derive that position and length are quite e�ective encodings of quantitative data while area and

color are less e�ective. These experiments have been replicated [88] and extended [112] since

then. Mackinlay formalized these results in APT [127], an automated visualization design tool.

Edward Tufte’s books on visualization design [206] prescribed many in�uential design guidelines.
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The guidelines include the use of small multiples (series of small charts using the same scales

and axes), maximizing the ratio of data-ink to non-data-ink, and eliminating unnecessary chart

elements, which he calls chart junk. Analysts who follow the best practices of good visual design

create visualization that are easier to understand. The tools they use should guide them towards

following these best practices.

2.2 Interactive Data Visualization

Even though Bertin’s work focused on maps and charts printed on white paper and seen from

a typical reading distance, a lot of the principles he discovered still apply today with computers.

Moreover, he used interaction with data—but without graphical user interfaces on computers—as

part of the analysis. For example, in his discussion of visual permutation matrices [14], he explains

how reorganizing the data and looking at in di�erent con�gurations can reveal patterns that are

otherwise hidden. Interactivity is a crucial component of e�ective visualization as it supports the

construction of knowledge [7, 124, 159]. It is woven into many areas of information visualization

today. Card et al. de�ne visualization itself as “interactive, visual representations of abstract data

to amplify cognition” [25].

Visualization interfaces typically use dynamic queries [5, 183] that update continuously as the user

adjusts sliders or selects items in the UI. These UI elements visually represent components of a

query so that users interact with a query through pointing, not typing. Modern user interface

applications such as Tableau—which grew out of the Polaris research project [198]—support data

analysis through direct manipulations of data and charts. These applications are grounded in

work in the HCI and Visualization community. Ben Shneiderman is one of the pioneers of data

visualization and proposed a taxonomy of data types to be visualized and tasks that visualizations

should support [184]. In the same paper he suggests a simple guideline for interactive visualization

interfaces: start with an overview of all data, then zoom and �lter to relevant items, and �nally
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view details of individual items. Card et al. situated Shneiderman’s principles within the larger

process of sense making [25].

Interactivity is critical for visual data analysis. Therefore, our programming tools should have

support for interactivity as a �rst-class design consideration. With Vega-Lite, we take this

consideration to heart and present a grammar of graphics tightly integrated with a novel grammar

of interaction.

2.3 Exploratory Data Analysis

Visualization has the goal of deeper understanding of data [25]. In Exploratory Data Analysis

(EDA) [208]—as coined by the statistician John Tukey—visualization plays an important role in

helping users get familiar with data, clarify goals, and devise a strategy to achieve these goals.

Data should be used to suggest hypotheses to test. Tukey’s view was that too little emphasis in

statistics was placed on parts of the analysis process that are not hypothesis testing. By exposing

analysts to their data, they may become aware of unanticipated features of the data [207, 209].

Con�ating hypothesis generation and hypothesis testing and running them on the same data leads

to bias and spurious insights. During exploration the analyst should clarify the goals of their

analysis and check assumptions (e.g., about data quality and distributions [110]) that are used to

test hypotheses later.

Exploratory analysis is by its nature open-ended and the exact exploration path is not prescribed.

This open-endedness implies that data systems for exploratory analysis need to be �exible enough

to support many analysis methods, questions, and answers and di�erent orders in which these

analysis stages are executed. Since many questions in this exploration space might be one-o�

questions that can come up at any stage of the analysis, queries are hard to anticipate. This scenario

where a system is queried without prior con�guration is called cold-start analytics; as opposed to

warm-start analytics where a system can run costly precomputation of likely queries.
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2.4 Visualization Specification

One way to describe a visualization is through a grammar, a set of atoms and rules. A good

grammar of visualizations will help us understand how complex charts are composed and show

parallels between seemingly unrelated visualizations [42]. A grammar may guide us on what correct

visualizations are, but there will still be many grammatically correct but nonsensical visualizations.

This is similar to grammar in natural languages such as English. A good grammar is necessary but

not su�cient to form a good sentence.

One of the most in�uential formalisms for specifying statistical graphics is the Grammar of Graphics

by Leland Wilkinson [222]. The Grammar of Graphics uses combinatorial building blocks to rapidly

construct graphics rather than picking from a limited set of charts in a chart typology [91]. The

basic building blocks of this grammar are primitives to specify the data and transformations, visual

encodings de�ned as mappings between data �elds and channels (e.g., position, size, and color),

and scales and guides (i.e., axes and legends). The popular ggplot library [219] implements a

variant of this grammar in the R statistical computing language. A language can be useful both for

specifying as well as reasoning over visualizations. For example, we developed Vega-Lite originally

as a language to automatically recommend visual designs in Voyager [224]. Stolte et al. developed

VizQL [84] as the formalism underlying Polaris [198].

These languages focus on statistical graphics and favor concise speci�cations over expressiveness.

Low-level details such as the choice of a color palette or the scale type (e.g., linear or logarithmic)

may be omitted and �lled in by smart defaults. Lower-level libraries such as Protovis [17], D3 [18],

and Vega [178] enable an expressive space of explanatory, custom designs. Bostock and Heer

show that the advantages of declarative design for exploratory graphics also apply to explanatory

graphics [89]; separating speci�cation from execution facilitate runtime optimization, retargeting

to di�erent platforms, and an iterative development process.
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With Vega-Lite, we present a new language that builds on this prior work. In contrast to prior

work, Vega-Lite expresses visualizations in JSON (JavaScript Object Notation) making them easier

to manipulate with computers. Vega-Lite also extends the ideas of previous high-level grammars

with composition and interactions. Since Vega-Lite is a grammar, it allows for valid speci�cations

but nonsensical visualizations. To guide people towards good designs within the space of possible

speci�cations, we have developed the Draco visualization model and recommendation system.

2.5 Visualizing Large Datasets

Visualization systems for big data must address two major challenges: perceptual scalability—how

to encode data in a way that it does not overwhelm the viewer—and interactive scalability—respond

to interactions with without long delays [122]. In a truly scalable visualization perceptual and

interactive scalability should be limited by the chosen resolution of the visualized data, not the

number of records [123].

Given the resolution of conventional displays (~1–3 million pixels), visualizing every data point

can lead to overplotting. If every data record is rendered as a mark, even modest amounts of data

can complicate people’s ability to interpret the data (Figure 2.1).

Often a di�erent encoding (e.g., changing from a positional to a color encoding) can reduce

overplotting and the amount of screen estate required. Visualization researchers have explored

parts of this design space [132, 176, 204] but we are still missing comprehensive design guidelines

for scalable visualizations.

As an alternative way to achieve perceptual scalability, we can reduce the amount of data that

is rendered. Many data reduction techniques exist [218]: �ltering, sampling, aggregation, and

modeling.

Sampling techniques select a subset of data, to which standard visualization techniques can be

applied (Figure 2.1 (b)). The selected subset, however, may still be too large to visualize e�ectively
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a b

c d

Figure 2.1: The same 200k points plotted four di�erent ways: as a scatterplot (a), sampled (b),

binned aggregation (c), and contour plot (d).
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and may omit elements of interest. In simple random sampling, every data point has the same

probability of being selected. The resulting sample may not be representative and can miss

important structures or outliers. For example, the absence of a point at a particular location does

not mean that there is no data at this point in the full data. Other sampling methods such as

strati�ed sampling or custom sampling schemes [107, 155] speed up data processing but generally

aim to show the same plot type as a plot of the full data.

Binned aggregation summarizes data by dividing the domain of variables into discrete units, and

then summarizing the points that fall within each bin [123, 218] (Figure 2.1 (c)). A simple count of

records forms a density estimate. Depending on the task, other aggregate functions (sum, average,

min, max, etc.) can be applied. For a numeric variable, we can de�ne bins as adjacent intervals over

a continuous range. For categorical variables, we can simply treat each value as a bin. Aggregation

can also be de�ned at multiple scales over a hierarchy [54], with nested, potentially non-uniform,

bins. For example, temporal values can be aggregated by day, week, month, quarter, year, and so

on. In terms of visualization, histograms and heatmaps are exemplary 1D and 2D binned plots.

Binned aggregation is one of the most �exible approaches to perceptually scalable visualization,

as it can convey both global patterns (e.g., densities) and local features (e.g., outliers), while

enabling multiple levels of resolution via the choice of bin size. Statisticians have proposed various

heuristics to select bin sizes for a numeric range (e.g., Sturges’ formula [201] and Scott’s reference

rule [180]). These heuristics can vary signi�cantly and their applicability to big data is unclear.

When visualizing large numbers of records, systems may treat bin count as an adjustable parameter,

bounded by the screen pixels allocated to a plot and available resources. At the limit, we can map

one bin to one pixel and include as many bins as memory constraints allow.

Alpha blending (reduced opacity or transparency) is often used instead of aggregation to combat

over-plotting [103]. Alpha-blending, however, is e�ectively an aggregation in image space rather

than data space. It requires drawing every mark and does not let us customize the transfer function

between density and visual encoding [28].
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Another reduction strategy is to describe data in terms of parametric statistical models (Figure 2.1

(d)). For example, we might �t a model and visualize the resulting parameters or theoretical

density. For scatter plots we might show trend lines and error envelopes for regression models

or contour plots to indicate a probability density. Examples for time series data include moving

averages and auto-regressive models. To create a model, we need to know exactly what we want to

show and often make certain assumptions about the data. Since the goal of visualization is often to

“learn about the unknowns” and discover aspects of the data that are not known a priori, creating a

model is often not an acceptable option.

2.6 Scalable Data Analysis Systems

Because people are limited in the number of data points they can e�ectively perceive, we need

to reduce the number of data points being rendered. For interactive visualization “at the speed

of thought” the primary bottleneck is then data processing. In a perfectly scalable system the

latency between an interaction and the corresponding response does not depend on the size of the

data [123]. In conventional client-server architectures, this latency is typically dominated by the

time to send a query and receive the results and the query time in the data management system.

There is a design space of systems that combine di�erent approaches to reduce query times:

distributed computation, precomputation, indexing, sampling and approximation.

2.6.1 Online Analytical Processing

Online analytical processing, also known as “OLAP” [34], is a well-studied approach to enabling

fast analytical queries over large, multidimensional datasets. The focus of OLAP is on supporting

aggregate operations, such as computing the average, maximum, or total results of a given measure

(e.g., total sales) across multiple data attributes (e.g., across US regions and �scal quarters). OLAP

is used primarily in business intelligence. In OLAP, four primary operations are supported for

data analysis: rollup (i.e., aggregation to create a coarser summary), drill-down (i.e., unrolling
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of aggregate results to produce a more detailed summary), slice-and-dice (i.e., database �lters

and projections), and pivots along the desired data dimensions [34]. Commonly, the computation

of OLAP queries is distributed across a cluster of machines that evaluate parts of the query on

partitions of the data (e.g., in large-scale shared-nothing systems [200]).

OLAP engines are designed to process large compute jobs in distributed clusters of machines. While

these systems handle massive datasets, query response times often exceed what is considered

interactive. To respond faster to user queries, systems use indexes, prefetching, and approximation.

2.6.2 Data Cubes

The data cube [79] is a fully materialized multi-dimensional table containing all aggregate results

for any aggregation operation that can be performed on a given dataset (i.e., any rollup or drill-down

operation). In a data cube, we can access aggregate results directly; instead of computing them from

the base data. However, the size of the data cube grows exponentially in the number of dimensions.

Even though these cubes can be computed in parallel [104, 139, 140], high materialization costs

make data cubes impractical for cold-start analytics.

Recent research has proposed specialized low latency systems to explore massive datasets such

as large time series [31]. Nanocubes [119] and imMens [123] are systems that store data in multi-

dimensional data cubes at multiple levels of resolution to perform accelerated query processing.

Nanocubes builds on the ideas of Dwarf cubes, a compact data structure for sparse cubes [188].

While Nanocubes requires a round trip for each interaction, imMens decomposes the cubes into

tiles that can be loaded into the browser. Through this decomposition and preloading imMens

achieves interactive scalability. However, it requires costly precomputation (many hours, no cold

start), limits interaction to a few dimensions, and only supports interaction at a bin resolution.
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2.6.3 Data Tiles and Prefetching

An alternative to precomputed indexes and data cubes is to reduce latency with caching, preloading,

and compression [12, 52]. Preloading is most e�ective when the system fetches data that is needed

as early as possible. Cetintemel et al. built on the assumption that interactions follow common

patterns and propose to use a model of user interactions to load the most useful data [30]. Battle et al.

implemented this idea in ForeCache, a system for browsing (zooming and panning) data tiles, for

example of satellite imagery. ForeCache speculatively loads data tiles that the user is most likely

going to request in the near future [11]. However, ForeCache is limited to browsing interactions. We

build on the ideas of data cubes and prefetching to build Falcon; a system for real-time brushing

and linking for billions of records.

2.6.4 Approximate Query Processing

An orthogonal approach to distributing work across multiple machines or indexing schemes is

using only a representative subset—a sample—of the data and computing an approximation. These

samples can be used to extrapolate estimated �nal values and the degree of certainty of the estimate.

The error in an approximation is often proportional to O (1/
p

n) where n is the number of tuples

in the sample. We can make two observations. First, to reduce the error from 2% to 0.2% one

typically needs 100x more data. Second, the error only depends on the number of tuples in the

sample and not the size of the original data. For big data, we can often have a good approximation

with only a fraction of the original data.

The idea behind approximate query processing (AQP) is to run aggregation queries on a sample and

estimate the true value of the aggregation. BlinkDB [3] implements this idea but requires costly

precomputation of samples to provide guarantees.

Rather than forcing users to settle on a �xed size sample, Hellerstein et al. [93] proposed online

aggregation: using an incrementally growing set of samples. The analyst can get a response quickly,

if imprecisely; the system converges on more precise values. Online aggregation has been adopted
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Figure 2.2: The Information Visualization Data State Reference Model from Chi et al. [38], which

can be used to model many visualization techniques and applications.

by the visualization community as a “progressive analytics” approach. Fisher et al. [62] showed that

analysts �nd approximate results su�ciently robust before the complete query �nishes. Adopting

a progressive computation model requires support for streaming in the whole data processing

pipeline and thus almost a complete rewrite of existing applications. With optimistic visualization

in Pangloss, we can use existing blocking implementations for the precise results.

2.6.5 Data Visualization as Dataflows

One way to modularize an interactive application is the Information Visualization ReferenceModel [25].

The model decomposes the visualization process into data acquisition and storage, visual encoding

of data, and rendering and interaction. Equivalent to the information visualization reference model,

Chi et al. de�ne the Data State Reference Model [39] (illustrated in Figure 2.2) to describe the set of

transformation stages which raw data goes through until visualized. Transformed data is ultimately

presented in a view after a visual mapping transform. Chi showed that this taxonomy is generic

enough to describe many common visualization techniques [38].

We can use this taxonomy to describe how a visualization application uses a transformation pipeline

as a data�ow graph of operators such as filter, map, reduce, join, and aggregate. A data�ow

graph is almost equivalent to a query execution plan in databases. After the transformation part

of the pipeline, the data must be mapped to visual attributes such as x, y, color, or shape using

a scale (e.g., a mapping from the data domain to a color palette) [222]. In addition to the above
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operators, a visualization application could use caching “operators”. For example, an interactive

map application that generates static tiles inserts a cache after the visual abstraction (tiles are

pregenerated).

The pipeline can be partitioned among di�erent computers according to available resources [135].

For example, the data may be residing on a database server while the user is interacting with a

visualization application on a thin client such as a web browser. In these scenarios, developing an

interactive visualization application means optimizing the whole data�ow from bytes on disk to

pixels on screen. The client-server architecture is popular on the web and in analytics applications.

One of the most widely used systems for visually exploring data is Tableau, the commercial version

of Polaris [198].

2.6.6 Data Management Systems for Visualization

The Tableau visualization system connects to relational databases and generates queries from a

visualization speci�cation. However, unsatis�ed with the performance of this online approach,

Tableau created the Tableau Data Engine [216], a specialized data analytic engine tightly coupled

with the desktop software. The authors emphasize the need for tighter coupling of the data

processing and visualization systems. In traditional systems, the visualization pipeline is divided

into separate and independent components. A lot of e�ort has gone into optimizing the data

processing systems but there has been little consideration of the corresponding user interfaces.

In this thesis, we show that deep integration of a visualization frontend with the data processing

system improves the user experience by reducing response times.

Wu et al. [227] describe their vision of a database system optimized for visualization applications.

They propose a Data Visualization Management System (DVMS) that reduces query times by consider-

ing visualization constraints for query optimization. Even though no such system exists yet, such a

system will need a machine readable speci�cation of the appearance and behavior of visualizations.

The languages proposed in this thesis can express these speci�cations.
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3 Vega-Lite: A Grammar of Interactive
Multi-View Graphics

Figure 3.1: Example visualizations created with Vega-Lite.

Most visualizations are authored through end-user applications such as spreadsheets or business

intelligence tools. Many of these tools lack consideration of perceptual principles or fall short of

fully supporting an expressive range of graphics. To raise the abstraction level of visualization,

this thesis contributes Vega-Lite as a foundation for writing programs that generate visualizations,

for example in the Voyager visualization recommendation browser [224]. Vega-Lite is a declarative

high-level format for representing and reasoning about interactive, multi-view visualizations.



22

By deferring execution concerns to the runtime, designers can focus on design questions rather

than implementation details. The declarative speci�cation facilitates systematic enumeration of

the design space, retargeting to di�erent platforms, reuse, and automatic optimization of the

execution.

Vega-Lite is designed for statistical graphics and—compared to the lower-level Vega [178] that

it compiles to—trades o� general expressivity for orders of magnitude shorter speci�cations. A

chart is speci�ed as a set of encodings that map data �elds to properties (e.g., color or size)

of graphical marks (e.g., points or bars). By combining these basic building blocks, users can

create an expressive range of graphics (Figure 3.1). To keep speci�cations concise, users can omit

low-level details such as axes and scales from their speci�cations. The gap between the high-level

abstractions and the low-level execution leads to ambiguity. The Vega-Lite compiler resolves this

ambiguity with carefully designed rules. Vega-Lite uses a declarative model for visual encoding,

providing a balance of expressive power and usable, domain-speci�c constructs. This approach

provides an abstraction where people can rapidly create visualizations in the midst of an analysis

session and where the runtime system can automatically optimize how data is processed.

In contrast to prior declarative visualization languages, Vega-Lite introduces a view algebra for

combining basic plots into more complex multi-view displays, and a new selection abstraction

for declarative speci�cation of interaction techniques. In Vega-Lite, a selection is an abstraction

that de�nes input event processing, points of interest, and a predicate function for inclusion

testing. Selections parameterize visual encodings by serving as input data, de�ning scale extents,

or by driving conditional logic. The Vega-Lite compiler automatically synthesizes requisite data

�ow and event handling logic, which users can override for further customization. In contrast to

existing reactive speci�cations, Vega-Lite selections decompose an interaction design into concise,

enumerable semantic units.

We �rst published Vega-Lite at IEEE VIS 2015 as part of the Voyager system (co-authored with Kanit

Wongsuphasawat, Anushka Anand, Jock Mackinlay, Bill Howe, and Je�rey Heer) [224] and extended
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it with selection to support interactions at IEEE VIS 2016 (co-authored with Arvind Satyanarayan,

Kanit Wongsuphasawat, and Je�rey Heer) [177]. Vega-Lite is an open source system—including

examples, tutorials, documentation, and an online editor—available at vega.github.io/vega-lite.

3.1 Introduction

Grammars of graphics span a gamut of expressivity. Low-level grammars such as Protovis [17],

D3 [18], and Vega [178] are useful for explanatory data visualization or as a basis for customized

analysis tools, as their primitives o�er �ne-grained control. However, for exploratory visualization,

higher-level grammars such as ggplot2 [217], and grammar-based systems such as Tableau (née

Polaris [199]), are typically preferred as they favor conciseness over expressiveness. Analysts

rapidly author partial speci�cations of visualizations; the grammar applies default values to resolve

ambiguities and synthesizes low-level details to produce visualizations.

High-level languages can also enable search and inference over the space of visualizations. For

example, Wongsuphasawat et al. [224] introduced Vega-Lite to power the Voyager visualization

browser. By providing a smaller surface area than the lower-level Vega language, Vega-Lite

makes systematic enumeration and ranking of data transformations and visual encodings more

tractable. The �rst version of Vega-Lite introduced with Voyager only supports static, single-view

visualizations.

However, existing high-level languages provide limited support for interactivity. An analyst can, at

most, enable a prede�ned set of common techniques (linked selections, panning & zooming, etc.) or

parameterize their visualization with dynamic query widgets [182]. For custom, direct-manipulation

interaction they must instead turn to imperative event handling callbacks. Recognizing that

callbacks can be error-prone to author, and require complex static analysis to reason about,

Satyanarayan et al. [179] formulated declarative interaction primitives for Vega. While these

additions facilitate programmatic generation and retargeting of interactive visualizations, they

https://vega.github.io/vega-lite/


24

remain low-level. Verbose speci�cation impedes rapid authoring and hinders systematic exploration

of alternative designs.

As part of this thesis, we present Vega-Lite, a high-level declarative language for interactive multi-

view graphics. We designed Vega-Lite with three design goals: concise speci�cations, support for

common designs, and support for interaction. Short speci�cations facilitate rapid authoring in the

midst of an analysis session. While concise, Vega-Lite’s API supports di�erent designs that can

facilitate di�erent tasks [176] of common analysis scenarios. Interaction is critical for e�ective

exploration [91, 159].

Towards these design goals, we describe how Vega-Lite enables concise, high-level speci�cation of

static and interactive data visualizations.

We �rst contribute a grammar to describe static multi-view visualizations. A single view is speci�ed

as a set of encodings that map data �elds to properties (e.g., color or size) of graphical marks (e.g.,

points or bars). To support expressive interaction methods, Vega-Lite contributes an algebra to

compose single-view Vega-Lite speci�cations into multi-view displays using layer, concatenate,

facet and repeat operators. Vega-Lite’s compiler infers how input data should be reused across

constituent views, and whether scale domains should be unioned or remain independent.

Second, we contribute a high-level interaction grammar. With Vega-Lite, an interaction design is

composed of selections: visual elements or data points that are chosen when input events occur.

Selections parameterize visual encodings by serving as input data, de�ning scale extents, and

providing predicate functions for testing or �ltering items. For example, a rectangular “brush” is a

common interaction technique for data visualization. In Vega-Lite, a brush is de�ned as a selection

that holds two data points that correspond to its extents (e.g., captured when the mouse button is

pressed and as it is dragged, respectively). Its predicate can be used to highlight visual elements

that fall within the brushed region, and to materialize a dataset as input to other encodings.

The selection can also serve as the scale domain for a secondary view, thereby constructing an

overview+detail interaction.
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For added expressivity, Vega-Lite provides a series of operators to transform a selection. Transforms

can be triggered by input events as well, and manipulate selection points or predicate functions. For

example, a toggle transform adds or removes a point from the selection, while a project transform

modi�es the predicate to de�ne inclusion over speci�ed data �elds.

The Vega-Lite compiler synthesizes a lower-level Vega speci�cation [178] with the requisite data

�ow, and default event handling logic that a user can override. Through a range of examples, we

demonstrate that Vega-Lite brings the advantages of high-level speci�cation to interactive visual-

ization. Common methods, including linked selection, panning, and zooming, as well as custom

techniques (drawn from an established taxonomy [228]) can be concisely described. Moreover,

selections, transformations, and their application to visual encodings decompose interaction into a

parametric design space. We show how each of these parameters can be systematically varied to

generate alternate interaction techniques for a given set of visual encodings. Such enumeration can

be useful to explore alternative designs, and can aid higher-level reasoning about interaction—for

example, recommending suitable interaction techniques as part of a design tool.

3.2 Related Work

Vega-Lite builds on prior work on grammars of graphics, visualization systems, and techniques for

interactive selection and querying.

3.2.1 Grammar-Based Visual Encoding

Since the initial publication of Wilkinson’s The Grammar of Graphics [222] in 1999, formal grammars

for statistical graphics have grown increasingly popular as a way to succinctly specify visualiza-

tions. In this grammar, a visualization is described as a mapping of �elds to visual properties of

graphical marks. Wilkinson’s work was quickly followed by the Stanford Polaris system [199],

later commercialized as Tableau. Hadley Wickham’s popular ggplot2 [217] and ggvis [74] packages

implement variants of Wilkinson’s model in the R statistical language. These tools eschew chart
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templates, which o�er limited means of customization, in favor of combinatorial building blocks.

Abstracting data models, graphical marks, visual encoding channels, scales and guides (i.e., axes

and legends) yields a more expressive design space, and allows analysts to rapidly construct graph-

ics for exploratory analysis [91]. Concise speci�cation is achieved in part through ambiguity: users

may omit details such as scale transforms (e.g., linear or log) or color palettes, which are then

�lled in using a rule-based system of smart defaults. More expressive lower-level (and thus more

verbose) grammars, including those of Protovis [17], D3 [18], and Vega [178], have been widely

used for creating explanatory and highly-customized graphics.

The design of Vega-Lite is heavily in�uenced by these works. Drawing from Wilkinson’s grammar

and Polaris/Tableau, Vega-Lite similarly represents basic plots using a set of encoding de�nitions

that map data attributes to visual channels such as position, color, shape, and size, and may include

common data transformations such as binning, aggregation, sorting, and �ltering. Drawing from

Vega, Vega-Lite uses a portable JSON syntax that permits generation from a variety of programming

languages. Vega-Lite speci�cations are compiled to full Vega speci�cations, hence the expressive

gamut of Vega-Lite is a strict subset of that of Vega. As we will later demonstrate, Vega-Lite

sacri�ces some expressiveness for dramatic gains in the conciseness and clarity of speci�cation.

In terms of visual encoding, Vega-Lite di�ers most from other high-level grammars in its approach

to multiple view displays. Each of these grammars supports faceting (or nesting) to construct

trellis plots in which each cell similarly visualizes a di�erent partition of the data. Both Wilkinson’s

grammar and Polaris/Tableau achieve this through a table algebra over data �elds, which in turn

determines spatial subdivisions. Tableau additionally supports the construction of multi-view

dashboards via a di�erent mechanism, with each view backed by a separate speci�cation. In

contrast, we contribute a view algebra: starting with unit speci�cations that de�ne a single plot,

Vega-Lite expresses composite views using operators for layering, horizontal or vertical concatena-

tion, faceting, and parameterized repetition. When applicable, these operators will merge scale

domains and properly align constituent views. Disparate views can also be combined into arbitrary

dashboards, all within a uni�ed algebraic model.
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3.2.2 Specifying Interactions in Visualization Systems

Despite the central role of interaction in e�ective data visualization [91, 159], little work has been

done to develop a grammar for specifying interaction techniques. Wilkinson’s grammar includes

no notion of interaction. Neither does VizQL, the language underlying Tableau [84]. In Tableau,

interactions are handled by a separate layer, implemented as an event model. Early systems like

GGobi [202] support common techniques as well, and provide imperative APIs for custom methods.

However, such APIs make easy tasks needlessly complex, burdening developers with learning

low-level execution details. More recent systems, including Protovis, D3, and VisDock [40], o�er a

typology of common techniques that can be applied to a visualization. Such top-down approaches,

however, limit customization and composition. For example, D3’s interactors encapsulate event

processing, making it di�cult to combine them if their events con�ict (e.g., if dragging triggers

brushing and panning).

The prior work perhaps most closely related to Vega-Lite is the Reactive Vega language [179].

Reactive Vega draws on Functional Reactive Programming techniques to formulate composable,

declarative interaction primitives for data visualization. Reactive Vega models input events as

continuous data streams. To succinctly de�ne event streams of interest, Vega employs an event

selector syntax, which Vega-Lite also uses for customized event logic. Event streams, in turn,

drive dynamic variables called signals. Signals parameterize the remainder of the visualization

speci�cation, endowing it with reactive semantics. When a new event �res, it propagates to

dependent signals; visual encodings that use them are automatically re-evaluated and re-rendered.

This reactive approach is not only capable of expressing a diverse set of interactions [179], it is

performant as well [178], with interactive performance at least twice as fast as the equivalent

D3 program. Moreover, declarative speci�cations are easier to analyze, optimize, and retarget to

di�erent platforms than imperative programs.

However, Vega’s reactive speci�cations are low-level and verbose. As a user, you have to specify

event triggers and update expressions. Specifying common techniques can be time-consuming,
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requiring tens of lines of JSON, and it is di�cult to know how to adapt techniques in pursuit of

alternative designs. Vega has low viscosity in the Cognitive Dimensions of Notation [80]. In contrast,

Vega-Lite is a higher-level speci�cation language, with primitives that decompose interaction

design into a parametric space. Common methods require typically 1-2 lines of code, and design

variations can be explored by systematically enumerating de�ned properties. Nevertheless, Reactive

Vega provides a performant runtime and an “assembly language” to which Vega-Lite speci�cations

are compiled.

3.2.3 Interactive Selection and Querying

Selection, often in the form of users clicking or lassoing visual items of interest, is a fundamental

operation in user interfaces and has been well-studied in the context of data visualization. For

example, in Snap-Together Visualization [146], multiple views are coordinated via “primary-”

and “foreign-key actions,” which propagate selected data tuples from one view to the others.

Wilhelm [221] describes the need for such “indirect object manipulation” methods as an axiom of

interactive data displays. Chen’s compound brushing [36] provides a visual data�ow language for

specifying a rich space of transformations of brush selections. More recently, Brunel [23] provides

a special #selection data �eld that is dynamically populated with the elements a user interacts

with, and can be used to link multiple views or �lter input data. Similarly, RStudio’s Shiny [182],

an imperative web application layer, provides brushedPoints and nearestPoints functions which

can be used throughout an R script to operate on selected elements.

Other systems have studied formally representing selections as data queries [221]. For example,

brushing interactions in VQE [49] generate extensional queries that enumerate all items of interest;

a form-based interface enables speci�cation of intensional (declarative) queries. Individual point

and brush selections in DEVise [125], known as visual queries, map to a declarative structure and are

used to link together multiple views. With VIQING [148], rectangular “rubber band” selections are

modeled as range extents, and views can be dropped on top of each other to join their underlying
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datasets. Heer et al. [87] demonstrate that by modeling a selection as a declarative query, interactive

“query relaxation” can successively capture more items of interest.

Vega-Lite builds on this work by richly integrating an interactive selection abstraction with the

primitives of visual encoding grammars. Vega-Lite selections are populated with one or more

points of interest, in response to user interaction. Extensible predicate functions map selections

to declarative queries, and allow a minimal set of “backing” points to represent the full space of

selected points. Additional operators can transform a selection’s predicate or backing points (e.g.,

o�setting them to translate a brush selection or perform panning). Selections then parameterize

visual encodings by serving as input data, de�ning scale extents, or using predicates to test or �lter

items. The result is an enumerable, combinatorial design space of interactive statistical graphics,

with concise speci�cation of not only linking interactions, but panning, zooming, and custom

techniques as well.

3.3 The Vega-Lite Grammar of Graphics

Vega-Lite combines a grammar of graphics with a novel grammar of interaction. In this section,

we describe Vega-Lite’s basic visual encoding constructs and an algebra for view composition.

In Voyager [224], we �rst introduced the simplest Vega-Lite speci�cation—here referred to as a

unit speci�cation—that de�nes a single Cartesian plot with a speci�c mark type to encode data

(e.g., bars, lines, plotting symbols). Given multiple unit plots, Vega-Lite introduces layer, concat,

facet, and repeat operators to provide an algebra for constructing composite views. This algebra

can express layered plots, trellis plots, and arbitrary multiple view displays. Each operator is

responsible for combining or aligning underlying scales and axes as needed.
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3.3.1 Unit Specification

A unit speci�cation describes a single Cartesian plot, with a backing data set, a given mark-type,

and a set of one or more encoding de�nitions for visual channels such as position (x, y), color, size,

etc.. Formally, a unit view is a four-tuple:

unit := (data, transform, mark-type, encodings)

The data de�nition identi�es a data source, a relational table consisting of records (rows) with

named attributes (columns). This data table can be subject to a set of transformations, including

�ltering and adding derived �elds via formulas. The mark-type speci�es the geometric object used

to visually encode the data records. Legal values include bar, line, area, text, rule for reference

lines, and plotting symbols (point & tick). Vega-Lite version 3 introduces composite marks (e.g.,

boxplot, errorband), which are compiled to layered marks. Composite marks allow for even more

concise speci�cations of common designs. The encodings determine how data attributes map to the

properties of visual marks. Formally, an encoding is a seven-tuple:

encoding := (channel, �eld, data-type, value, functions, scale, guide)

Available visual encoding channels include spatial position (x, y), color, shape, size, and text. An order

channel controls sorting of stacked elements (e.g., for stacked bar charts and the layering order of

line charts). A path order channel determines the sequence in which points of a line or area mark

are connected to each other. A detail channel includes additional group-by �elds in aggregate plots.

The �eld string denotes a data attribute to visualize, along with a given data-type (one of nominal,

ordinal, quantitative or temporal). Alternatively, one can specify a constant literal value to serve

as the data �eld. The data �eld can additionally be transformed using functions such as binning,

aggregation (sum, average, etc.), and sorting.

An encoding may also specify properties of a scale that maps from the data domain to a visual range,

and a guide (axis or legend) for visualizing the scale. If not speci�ed, Vega-Lite will automatically

populate default properties based on the channel and data-type. For x and y channels, either a
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linear scale (for quantitative data) or an ordinal scale (for ordinal and nominal data) is instantiated,

along with an axis. For color, size, and shape channels, suitable palettes and legends are generated.

For example, quantitative color encodings use a single-hue luminance ramp, while nominal color

encodings use a categorical palette with varied hues. Our default assignments largely follow the

model of prior systems [199, 224].

Unit speci�cations can express a variety of common, useful plots of both raw and aggregated data.

Examples include bar charts, histograms, dot plots, scatter plots, line graphs, and area graphs. Our

formal de�nitions are instantiated in a JSON syntax, as shown in Figure 3.2.

Correlation between wind and temperature

{
  "data": {
    "url": "data/weather.csv"
  },
  "mark": "line",
  "encoding": {
    "x": {
      "field": "date",
      "type": "temporal",
      "timeUnit": "month" },
    "y": {
      "field": "temp_max",
      "type": "quantitative",
      "aggregate": "mean" },
    "color": {
      "field": "location",
      "type": "nominal" } 
  } 
}

{
  "data": {
    "url": "data/weather.csv"
  },
  "mark": "point",
  "encoding": {
    "x": {
      "field": "temp_max",
      "type": "quantitative",
      "bin": true },
    "y": {
      "field": "wind",
      "type": "quantitative",
      "bin": true },
    "size": {
      "aggregate": "count" },
    "color": {
      "field": "location",
      "type": "nominal" } 
  } }

{
  "data": {
    "url": "data/weather.csv"
  },
  "mark": "bar",
  "encoding": {
    "x": {
      "field": "location",
      "type": "nominal"
    },
    "y": {
      "type": "quantitative",
      "aggregate": "count"
    },
    "color": {
      "field": "weather",
      "type": "nominal"
    } 
  } 
}

Line chart with aggregation Stacked bar chart of weather typesa b

c

Figure 3.2: Vega-Lite unit speci�cations visualizing weather data. These examples demonstrate

varied mark types and data transformations.
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3.3.2 View Composition Algebra

Given multiple unit speci�cations, composite views can be created using a set of composition

operators. Here we describe the set of supported operators. We use the term view to refer to any

Vega-Lite speci�cation, whether it is a unit or composite speci�cation.

3.3.2.1 Layer

The layer operator accepts multiple unit speci�cations to produce a view in which subsequent charts

are plotted on top of each other. For example, a layered view could consist of one layer showing a

histogram of a full data set, and another overlaying a histogram of a �ltered subset (Figure 3.13).

The signature of the operator is:

layer([unit1, unit2, ...], resolve)

To create a layered view, we share scales (if their types match) and merge guides by default. For

example, we compute the union of the data domains for the x or y channel, for which we then

generate a single scale. We believe this is a useful default for producing coherent and comparable

layers. However, Vega-Lite cannot enforce that an unioned domain is semantically meaningful.

To prohibit layering of composite views with incongruent internal structures, the layer operator

restricts its operands to be unit views.

To override the default behavior, users can specify strategies to resolve scales and guides using

tuples of the form (scale|axis|legend, channel, resolution), where resolution is one of independent or
shared. Independent scales and guides for each layer produce a dual-axis view, as shown in the

layered plots in Figure 3.3.
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Layer

UnitUnit

{
  "data": {"url": "data/weather-seattle.csv"},
  "layer": [
    {
      
      "mark": "bar",
      "encoding": {
        "x": {
          "field": "date", "type": "temporal",
          "timeUnit": "month" },
        "y": {
          "field": "precipitation", "type": "quantitative",
          "aggregate": "mean", "axis": {"grid": false} },
        "color": {"value": "#77b2c7"} }
    }, {
      "mark": "line",
      "encoding": {
        "x": {
          "field": "date", "type": "temporal",
          "timeUnit": "month" },
        "y": {
          "field": "temp_max", "type": "quantitative",
          "aggregate": "mean", "axis": {"grid": false} },
        "color": {"value": "#ce323c"} }
    } ],
  "resolve": {
    "scale": {"y": "independent"}
  } }

Figure 3.3: A dual axis chart that layers lines for temperature on top of bars for precipitation; each

layer uses an independent y-scale.

3.3.2.2 Concatenation

To place views side-by-side, Vega-Lite provides operators for horizontal and vertical concatenation

and wrapping. The signatures for these operators are:

hconcat([view1, view2, ...], resolve)

vconcat([view1, view2, ...], resolve)

concat([view1, view2, ...], columns, resolve)

If aligned spatial channels have matching data �elds (e.g., the y channels in a hconcat use the same

�eld), a shared scale and axis are used. Axis composition facilitates comparison across views and

optimizes the underlying implementation. Figure 3.4 concatenates the line chart from Figure 3.2(a)

with a dot plot, using independent scales.
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{
  "vconcat": [
    { ... },
    {
      "data": {
        "url": "data/weather.csv",
      },
      "transform": {
        "filter": "datum.precipitation > 0"
      },
      "mark": "point",
      "encoding": {
        "y": {"field": "location","type": "nominal"},
        "x": {
          "type": "quantitative",
          "aggregate": "count"
        },
        "color": {
          "field": "date",
          "type": "temporal",
          "timeUnit": "year"
        } 
      } 
    }
  ] 
}

Figure 3.4: The temperature line chart from Figure 3.2(a) concatenated with rainy day counts in

New York and Seattle; scales and guides for each plot are independent.

3.3.2.3 Facet

While concatenation allows composition of arbitrary views, one often wants to set up multiple

views in a parameterized fashion. The facet operator produces a trellis plot [13] by subsetting the

data by the distinct values of a �eld. The signature of the facet operator is:

facet(channel, data, �eld, view, scale, axis, resolve)

The channel indicates if sub-plots should be laid out vertically (row) or horizontally (column). The

given data source is partitioned using distinct values of the �eld. The view speci�cation provides a

template for the sub-plots, inheriting the backing data for each partition from the operator. The

scale and axis parameters specify how sub-plots are positioned and labeled. Figure 3.5 demonstrates

faceting into columns.

For concision, each sub-plot’s unit view can omit the data property and implicitly adopt the

partitioned data.
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To facilitate comparison, scales and guides for quantitative �elds are shared by default. This

ensures that each facet visualizes the same data domain. Users can override the default behavior

via the resolve component.

{
  "data": {
    "url": "data/weather.csv",
  },
  "facet": {
    "column": {
      "field": "location",
      "type": "nominal"
    }
  },
  "spec": {
    "mark": "line",
    "encoding": {
      "x": { ... },
      "y": { ... },
      "color": { ... }
    }
  } 
}

Figure 3.5: Weather data faceted by location; the y-axis is shared, and the underlying scale domains

unioned, to enable easier comparison.

3.3.2.4 Repeat

The repeat operator generates multiple plots, but unlike facet allows full replication of a data set in

each cell. For example, repeat can be used to create a scatterplot matrix (SPLOM), where each cell

shows a di�erent 2D projection of the same data table. The signature is:

repeat(channel, values, scale, axis, view, resolve)

Like facet, the channel parameter indicates if plots should divide by row or column. Rather than

partition data according to a �eld, this operator generates one plot for each entry in a list of values.

Encodings within the repeated view speci�cation can refer to this provided value to parameterize

the plot1. By default, scales and axes are independent, but legends are shared when data �elds

coincide. Like facet, the scale and axis components allow users to override defaults for how sub-plots

1As the repeat operator requires parameterization of the inner view, it is not strictly algebraic. It is possible to
achieve algebraic “purity” via explicit repeated concatenation or by reformulating the repeat operator (e.g., by
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are positioned and labeled, while resolve controls resolution of scales and guides within the plots

themselves.

{
  "repeat": {
    "column": ["temp_max","precipitation"]
  },
  "spec": {
    "data": {
      "url": "data/weather.csv"
    },
    "mark": "line",
    "encoding": {
      "x": { ... }
      "y": {
        "field": {"repeat": "column"},
        "type": "quantitative",
        "aggregate": "mean"
      },
      "color": { ... }
    } 
} }

Figure 3.6: Repetition of di�erent measures across columns; the y channel references the column

template parameter to vary the encoding.

3.3.3 Nested Views

Composition operators can be combined to create more complex nested views or dashboards, with

the output of one operator serving as input to a subsequent operator. For instance, a layer of two

unit views might be repeated, and then concatenated with a di�erent unit view. The one exception

is the layer operator, which, as previously noted, only accepts unit views to ensure consistent

plots. For concision, two-dimensional faceted or repeated layouts can be achieved by applying the

operators to the row and column channels simultaneously. When faceting a composite view, only

the dataset targeted by the operator is partitioned; any other datasets speci�ed in sub-views are

replicated.

including rewrite rules that apply to the inner view speci�cation). However, we believe the current syntax to be
more usable and concise than these alternatives.
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3.4 The Vega-Lite Grammar of Interaction

To support speci�cation of interaction techniques, Vega-Lite extends the de�nition of unit speci�-

cations to also include a set of selections. Selections identify the set of points a user is interested in

manipulating. We formally de�ne a selection as an eight-tuple:

selection := (name, type, predicate, domain|range, event, init, transforms, resolve)

When an input event occurs, the selection is populated with backing points of interest. These points

are the minimal set needed to identify all selected points. The selection type determines how many

backing values are stored, and how the predicate function uses them to determine the set of selected

points. Supported types include a single point, multiple discrete points, or a continuous interval of

points.

A single selection is backed by a single datum, and its predicate tests for an exact match against

properties of this datum. It can also function like a dynamic variable (or signal in Vega [179]), and

can be invoked as such. For example, it can be referenced by name within a �lter expression, or

its values used directly for encoding channels. Multi selections, on the other hand, are backed by

datasets into which points are inserted, modi�ed or removed as events �re. They express discrete

selections, as their predicates test for an exact match with at least one value in the backing dataset.

The order of points in a multi selection can be semantically meaningful, for example when a multi

selection serves as an ordinal scale domain. Figure 3.7 illustrates how points are highlighted in a

scatterplot using single and multi selections.

Intervals are similar to multi selections. They are backed by datasets, but their predicates determine

whether an argument falls within the minimum and maximum extent de�ned by the backing

points. Thus, they express continuous selections. The compiler automatically adds a rectangle

mark, as shown in Figure 3.8(a), to depict the selected interval. Users can customize the appearance

of this mark via the mark keyword, or disable it altogether when de�ning the selection.
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{
  "data": {"url": "data/cars.json"},
  "mark": "circle",
  "select": {
    "id": {"type": "point"}
  },
  "encoding": {
    "x": {"field": "Horsepower", "type": "Q"},
    "y": {"field": "MPG", "type": "Q"},
    "color": {
      "condition": {
        "selection": "id",
        "field": "Origin", "type": "N"
      },
      "value": "grey"
    },
    "size": {"value": 100}
  }

Highlight a single point on click

"id": {"type": "point", {"fields": ["Origin"]}

Highlight a single Origin

"id": {"type": "multi", "toggle": true}

Highlight a list of individual points

"select": {
  "id": {"type": "multi", "toggle": true, "fields": ["Origin"]}
}, ...

Highlight a list of Origins

"Paintbrush": highlight multiple points on hover

"id": {"type": "multi", "on": "mouseover", "toggle": true}

a

b c

d e

Figure 3.7: (a) Adding a single point selection to parameterize the �ll color of a scatterplot’s circle

mark. (b) Switching to a multi selection, with the toggle transform automatically added (true

enables default shift-click event handling). (c) Specifying a custom event trigger: the �rst point is

selected on mouseover and subsequent points when the shift key is pressed (customizable via the

toggle transform). (d) Using the project transform with a single selection to highlight all points

with a matching Origin, and (e) combining it with a multi selection to select multiple Origins.

Predicate functions enable a minimal set of backing points to represent the full space of se-

lected points. For example, with predicates, an interval selection need only be backed by two
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"region": {"type": "interval", 
  "encodings" ["x"]}

"region": {"type": "interval", 
  "encodings": ["y"]}

Single-dimension brush

"region": {"type": "interval", "translate": true}

Moving the brush

"select": {
  "region": {"type": "interval"}
},
...
  "color": {
    "condition": {
      "selection": "region",
      ...
    }
  }

...

Rectangular brusha b

c

Figure 3.8: (a) Adding a rectangular brush, as an interval selection, which can be (b) moved with

the translate transform (automatically instantiated by the compiler) or (c) restricted to a single

dimension with the project transform.

points: the minimum and maximum values of the interval. While selection types provide default

de�nitions, predicates can be customized to concisely specify an expressive space of selections.

For example, a single selection with a custom predicate of the form datum.binned_price ==

selection.binned_price is su�cient for selecting all data points that fall within a given bin.

By default, backing points lie in the data domain. For example, if the user clicks a mark instance,

the underlying data tuple is added to the selection. If no tuple is available, event properties are

passed through inverse scale transforms. For example, as the user moves their mouse within the

data rectangle, the mouse position is inverted through the x and y scales and stored in the selection.

De�ning selections over data values, rather than visual properties, facilitates reuse across distinct

views; each view may have di�erent encodings speci�ed, but are likely to share the same data

domain. However, some interactions are inherently about manipulating visual properties—for
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example, interactively selecting the colors of a heatmap. For such cases, users can de�ne selections

over the visual range instead. When input events occur, visual elements or event properties are

then stored.

The particular events that update a selection can be customized. By default, we use mouse events.

A user can specify alternate events (e.g., touch events on mobile) using Vega’s event selector

syntax [179]. For example, Figure 3.7(c) demonstrates how mouseover events are used to populate

a multi selection. With the event selector syntax, multiple events are speci�ed using a comma (e.g.,

mousedown, mouseup adds items to the selection when either event occurs). A sequence of events

is denoted with the right-combinator. For example, [mousedown, mouseup] > mousemove selects

all mousemove events that occur between a mousedown and a mouseup (otherwise known as “drag”

events). Events can also be �ltered using square brackets (e.g., mousemove [event.pageY > 5]

for events at the top of the page) and throttled using braces (e.g., mousemove{100ms} populates a

selection at most every 100 milliseconds).

Finally, selections can be initialized with speci�c backing points (we defer discussion of transforms

and resolve to subsequent sections). Vega-Lite provides a built-in mechanism to initialize multi

and interval selections using the scales of the unit speci�cation they are de�ned in. Doing so

populates the selection with the given scales’ domain or range, as appropriate for the selection,

and parameterizes the scales to use the selection instead. By default, this occurs for the scales

of the x and y channels, but alternate scales can be speci�ed by the user. This step allows scale

extents to be interactively manipulated, yet remain automatically initialized by the input data.

3.4.1 Selection Transforms

Analogous to data transforms, selection transforms manipulate the components of the selection

they are applied to. For example, they may perform operations on the backing points, alter a

selection’s predicate function, or modify the input events that update the selection. We identify the

following transforms as a minimal set to support both common and custom interaction techniques:
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3.4.1.1 Project
project(�elds, channels)

The project transform alters a selection’s predicate function to determine inclusion by matching

only the given �elds. Some �elds, however, may be di�cult for users to address directly (e.g., new

�elds introduced due to inline binning or aggregation transformations). For such cases, a list of

channels may also be speci�ed (e.g., color, size). Figure 3.7(d, e) demonstrate how project can be

used to select all points with matching Origin �elds, for example. This transform is also used to

restrict interval selections to a particular dimension (Figure 3.8(c)) or to determine which scales

initialize a selection.

3.4.1.2 Toggle
toggle(event)

The toggle transform is automatically instantiated for uninitialized multi selections. When the

event occurs, the corresponding point is added or removed from a multi selection’s backing dataset.

By default, the toggle event corresponds to the selection’s event but with the shift key pressed. For

example, in Figure 3.7(b), additional points are added to the multi selection on shift-click (where

click is the default event for multi selections). The selection in Figure 3.7(c), however, speci�es a

custom mouseover event. Thus, additional points are inserted when the shift key is pressed and

the mouse cursor hovers over a point.

3.4.1.3 Translate
translate(events, by)

The translate transform o�sets the spatial properties (or corresponding data �elds) of backing

points by an amount determined by the coordinates of the sequenced events. For example, on the

desktop, drag events ([mousedown, mouseup] > mousemove) are used and the o�set corresponds

to the di�erence between where the mousedown and subsequent mousemove events occur. If no

coordinates are available (e.g., as with keyboard events), an optional by argument should be
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speci�ed. This transform respects the project transform as well, restricting movement to the

speci�ed dimensions. This transform is automatically instantiated for interval transforms.

3.4.1.4 Zoom
zoom(event, factor)

The zoom transform applies a scale factor, determined by the event, to the spatial properties (or

corresponding data �elds) of backing points. An optional factor should be speci�ed, if it cannot be

determined from the events (e.g., when the arrow keys are pressed).

3.4.1.5 Bind
bind(widget|scales)

The bind transform establishes a two-way binding between the selection and input elements or

scales. One input element per projection is generated and can be used to manipulate the selection;

any direct manipulation interactions (e.g., clicking on the visualization) will similarly update

the input element. If multiple projections are speci�ed, customized bindings can be speci�ed by

mapping the projected �eld/encoding to a binding de�nition.

With interval selections, the bind property can be set to the value scales to enable a two-way binding

between the selection and the scales used within the same view. This binding �rst populates the

interval selection with the scale domains, and then uses the selection to drive the scale domains.

As a result, the view now functions like an interval selection and can be panned and zoomed as

shown in Figure 3.9.

3.4.1.6 Nearest
nearest()

The nearest transform computes a Voronoi decomposition, and augments the selection’s event

processing, such that the data value or visual element nearest the selection’s triggering event is

selected (approximating a Bubble Cursor [81]). Currently, the centroid of each mark instance is
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"select": {
  "region": {
    "type": "interval", 
    "on": "[mousedown[event.shiftKey], mouseup] > mousemove"
   },
  "grid": { 
    "type": "interval", "bind": "scales", "zoom": true
    "translate": "[mousedown[!event.shiftKey], mouseup] > mousemove" 
  }
}, ...
...

Figure 3.9: Panning and zooming the scatterplot is achieved by binding an interval selection to the

scales, and then applying translate and zoom. Alternate events are speci�ed to prevent collision

with the brushing interaction, previously de�ned in Figure 3.8.

used to calculate the Voronoi diagram, but we plan to extend this operator to account for boundary

points as well (e.g., rectangle vertices).

3.4.2 Selection-Driven Visual Encodings

Once selections are de�ned, they parameterize visual encodings to make them interactive—visual

encodings are automatically reevaluated as selections change. First, selections can be used to drive

an if-then-else chain of logic within an encoding channel de�nition. Each data tuple participating

in the encoding is evaluated against selection predicates in turn, and visual properties are set

corresponding to the �rst branch that evaluates to true. For example, as shown in Figure 3.7, the

�ll color of the scatterplot circles is determined by a data �eld if they fall within the id selection,

or set to gray otherwise.

Next, selected points can be explicitly materialized and used as input data for other encodings

within the speci�cation. By default, this applies a selection’s predicate against the data tuples
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{
  "region": {..., 
    "resolve": "union"
  },

Unioned Brushes

{
  "repeat": {
    "row": ["Displacement", "Miles_per_Gallon"],
    "column": ["Horsepower", "Miles_per_Gallon"]
  },
  "spec": {
    "data": {"url": "data/cars.json"},
    "mark": "circle",
    "select": {
      "region": {
        "type": "interval", "translate": true, "zoom": true,
        "on": "[mousedown[event.shiftKey], mouseup] > mousemove",
        "resolve": "global"
       },
      "grid": { 
        "type": "interval", "init": {"scales": true}, "zoom": true
        "translate": "[mousedown[!event.shiftKey], mouseup] > mousemove",
        "resolve": "single" 
      }
    },
    "encoding": {
      "x": {
        "field": {"repeat": "column"}, "type": "quantitative"
      },
      "y": {
        "field": {"repeat": "row"}, "type": "quantitative"
      },
      "color": [
        {"if": "region", "field": "Origin", "type": "nominal"},
        {"value": "grey"}
      ],
      "size": {"value": 100}
    }
  }
}

A Global Brush, and Panning & Zooming in a Scatterplot Matrix

{
  "region": {..., 
    "resolve": "intersect"
  },

Intersected Brushesa b c

Figure 3.10: (a) By adding a repeat operator, we compose the encoding and interactions from

Figure 3.9 into a scatterplot matrix. Users can brush, pan, and zoom within each cell, and the

others update in response. By default, composite selections are resolved to a single global selection:

brushing in a cell replaces previous brushes. However, the resolution scheme can be set to (b) union,

such that points highlight if they fall in any brush; and (c) intersect, such that points highlight only

when they are within all brushes.

(or visual elements) of the unit speci�cation it is de�ned in. However, selections can also be

materialized against arbitrary datasets; a map transform supports rewriting the predicate function

in case of di�ering schemas. Using selections in this way enables linked interactions, including

displaying tooltips or labels, and cross-�ltering.

Besides serving as input data, a materialized selection can also de�ne scale extents. Initializing a

selection with scale extents o�ers a concise way of specifying this behavior within the same unit

speci�cation. For multi-view displays, selection names can be speci�ed as the domain or range of

a channel’s scale. Doing so constructs interactions that manipulate viewports, including panning

& zooming (Figure 3.9) and overview+detail (Figure 3.11).
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{
  "vconcat": [
    {
      "data": {"url": "data/sp500.csv"},
      "mark": "area",
      "select": {
        "region": {
          "type": "interval",
          "encodings": ["x"]
        }
      },
      "encoding": {
        "x": {"field": "date", "type": "temporal", ...},
        "y": {"field": "price", "type": "quantitative", ...}
      }
    },
    {
      "data": {"url": "data/sp500.csv"},
      "mark": "area",
      "encoding": {
        "x": {
          "field": "date", "type": "temporal", ...,
          "scale": {"domain": {"selection": "region"}}
        },
        "y": {"field": "price","type": "quantitative"}
      }
    }
  ]
}

Figure 3.11: An overview+detail visualization is constructed by concatenating two unit speci�cations,

with a selection in the �rst one parameterizing the x scale domain in the second.

In all three cases, selections can be composed using logical OR, AND, and NOT operators. As previously

discussed, single selections o�er an additional mechanism for parameterizing encodings. Properties

of the backing point can be directly referenced within the speci�cation, for example as part of a

�lter or compute expression, or to determine a visual encoding channel without the overhead of an

if-then-else chain. For example, the position of the rule in Figure 3.12 is set to the date value of

the indexPt selection.

3.4.3 Disambiguating Composite Selections

Selections are de�ned within unit speci�cations, providing a default context. For example, a

selection’s events are registered on the unit’s mark instances, and materializing a selection applies
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{
  "data": {"url": "data/stocks.csv"},
  "encoding": {"x": {"field": "date", "type": "temporal"}},
  "layer": [{
    "mark": "line",
    "encoding": {
      "y": {"field": "price", "type": "quantitative"},
      "color": {"field": "symbol", "type": "nominal"}
    }
  }, {
    "selection": {
      "indexPt”: {
        "type": "single", "on": "mousemove",
        "encodings": ["x"],
        "nearest": true
      }
    },
    "mark": {"type": "point"},
    "encoding": {
      "y": {"field": "price", "type": "quantitative"},
      "opacity": {"value": 0}
    }
  }, {
    "transform": [
      {"filter": {
        "and": ["index.date", {"selection": "indexPt"}]
      }}
    ],
    "mark": "rule"
  }]}

Figure 3.12: A line chart uses a point selection to draw a vertical rule nearest the mouse cursor.

its predicate against the unit’s input data by default. When units are composed, however, selection

de�nitions and applications become ambiguous.

Consider Figure 3.10(a), which illustrates how a scatterplot matrix (SPLOM) is constructed by

repeating a unit speci�cation. To brush, we de�ne an interval selection (region) within the unit,

and use it to perform a linking operation by parameterizing the color of the circle marks. However,

there are several ambiguities within this setup. Is there one region for the overall visualization,

or one per cell? If the latter, which cell’s region should be used? This ambiguity recurs when

selections serve as input data or scale extents, and when selections share the same name across a

layered or concatenated views.

Several strategies exist for resolving this ambiguity. By default, a global selection is created across

all views. With our SPLOM example, this setting causes a single brush to be populated and shared

across all cells. When the user brushes in a cell, points that fall within it are highlighted, and

previous brushes are removed (Figure 3.10).
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Users can specify an alternate ambiguity resolution when de�ning a selection. These schemes all

construct one instance of the selection per view, and de�ne which instances are used in determining

inclusion.

Selections can also be resolved to union or intersect. In these cases, all instances of a selection are

considered in concert: a point falls within the overall selection if it is included in, respectively,

at least one of the constituents or all of them. More concretely, with the SPLOM example, these

settings would continue to produce one brush per cell, and points would highlight when they

lie within at least one brush (union) or if they are within every brush (intersect) as shown in

Figure 3.10(b, c).

3.5 The Vega-Lite Compiler

The Vega-Lite compiler ingests a JSON speci�cation and outputs a lower-level Reactive Vega

speci�cation (also expressed as JSON). There are two main challenges when compiling Vega-Lite to

Vega. First, there is no one-to-one correspondence between components of the Vega-Lite and Vega

speci�cations. For instance, the compiler must synthesize a single Vega data source, with transforms

for binning and aggregation, from multiple Vega-Lite encoding de�nitions. Conversely, for a single

de�nition of a Vega-Lite selection, the compiler might generate multiple Vega signals, data sources,

and even parameterize scale extents. Second, to facilitate rapid authoring of visualizations, Vega-

Lite speci�cations omit lower-level details including scale types and the properties of the visual

elements such as the font size. The compiler must resolve the resulting ambiguities.

To overcome these challenges, the compiler generates the output Vega speci�cation in four phases:

parse ingests and disambiguates the Vega-Lite speci�cation; build creates the necessary internal

representations to map between Vega-Lite and Vega primitives; merge optimizes this representation

to remove redundancies; and �nally, assemble compiles this representation into a Vega speci�cation.
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3.5.1 Parse

In the �rst step, the compiler parses a Vega-Lite speci�cation to disambiguate it. It does so

primarily by applying rules crafted to produce perceptually e�ective visualizations. For example, if

the color channel is mapped to a nominal �eld, and the user has not speci�ed a scale domain, a

categorical color palette is inferred. If the color is mapped to a quantitative �eld, a sequential color

palette is chosen instead.

In chapter 4, we will discuss how Draco uses logic programming to assign default values when they

are not speci�ed by the user. Draco can assign any property of a speci�cation while Vega-Lite’s

defaults focus on the most common attributes (i.e., axes, legends, mark properties etc.).

3.5.2 Build

Next, the compiler builds an internal representation of this unambiguous speci�cation, consisting

of a tree of models. Each model represents a unit or composite view produced by the algebraic

operators described in section 3.3, and stores a series of components. Components are data structures

that loosely correspond to Vega primitives (such as data sources, scales, and marks) and provide a

mapping to Vega-Lite primitives. Thus, they allow the compiler to bridge the gulf between the two

levels of abstraction. For example, a data component details how the dataset should be loaded (e.g.,

is it embedded directly in the speci�cation, or should it be loaded from a URL, and in what format),

which �elds should be aggregated or binned, and what �lters and calculations should be performed.

The Vega-Lite compiler uses selection components to encapsulate the information needed to parse

selections and construct the required scales, transforms, and signals.

3.5.3 Merge and Optimize

In this step, compile-time selection transforms (those not parameterized by events) are applied

to the requisite components. For example, the project transform overrides the predicate function

de�ned in a selection component, while the nearest transform augments a mark component with
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a Voronoi diagram. This phase also constructs a layout component to calculate suitable spatial

dimensions for views. This component emits Vega data sources and transforms to calculate a

bottom-up layout at runtime.

Once the necessary components have been built, the compiler performs a bottom-up traversal of the

model tree to merge redundant components. This step is critical for ensuring that the resultant Vega

speci�cation does not perform unnecessary computation that might hinder interactive performance.

To determine whether components can be merged, the compiler serializes them using a hash

code and compares components of the same type. For example, when a scatterplot matrix is

speci�ed using the repeat operator, merging ensures that we only produce one scale for each

row and column rather than two scales per cell (2N versus 2N2 scales). Merging may introduce

additional components if doing so results in a more optimal representation. This step also unions

scale domains and resolves selection components.

During the merge step, the Vega-Lite compiler also performs optimizations of the data�ow graph

created during parsing. The optimizer removes redundant transforms, merges identical data�ows,

and reorders data�ow nodes such that the resulting data�ow is more e�cient. While moving

facetet operators closer towards the source nodes of the data�ow, it creates a copy of the traversed

nodes for scale domains that are shared between faceted views.

3.5.4 Assemble

The �nal phase assembles the requisite Vega speci�cation. Selection components, in particular,

produce signals to capture events and the necessary backing points, and list and intervals construct

data sources as well to hold multiple points. Each run-time selection transform (i.e., those that are

triggered by an event) generates signals as well, and may augment the selection’s data source with

data transformations. For example, the translate transform adds a signal to capture an “anchor”

position, to determine where panning begins, and another to calculate a “delta” from the anchor.
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These two signals then feed transforms that o�set the backing points stored in the selection’s data

source, thereby moving the brush or panning the scales.

3.6 Example Visualizations

Vega-Lite’s design is motivated by two goals: to enable rapid yet expressive speci�cation of

interactive visualizations, and to do so with concise primitives that facilitate systematic enumeration

and exploration of design variations. In this section, we demonstrate how these goals are addressed

using a range of example interactive visualizations. To evaluate expressivity, we choose examples

that cover Yi et al.’s [228] taxonomy of interaction methods. The taxonomy identi�es seven

categories of techniques: select, to mark items of interest; explore to examine subsets of the data;

connect to highlight related items within and across views; abstract/elaborate to vary the level of

detail; recon�gure to show di�erent arrangements of the data; �lter to show elements conditionally;

and, encode, to change the visual representations used. To assess authoring speed, we compare our

speci�cations against canonical Reactive Vega examples [151, 178, 179]. Vega provides a higher-level

visualization speci�cation language on top of the popular D3 [18] library. Where applicable, we also

show how construction of our examples can be systematically varied to explore alternate points in

the design space.

3.6.1 Select with Clicking and Brushing

Figure 3.7(a) provides the full Vega-Lite speci�cation for a scatterplot where users can mark

individual points of interest. It includes the simplest de�nition of a selection—a name and type—

and illustrates how the mark color is parameterized by if-then-else logic.

Modifying a single property, type, as in Figure 3.7(b), allows users to mark multiple points (toggle is

automatically instantiated by the compiler, but we explicitly specify it in the �gure for clarity). We

can instead project on �elds (Figure 3.7(d)) such that marking a single point of interest highlights
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all other points that share particular data values—a connect-type interaction. Such changes to the

speci�cation are not mutually exclusive, and can be composed as shown in Figure 3.7(e).

By using the interval type, users can mark items of interest within a continuous region. As shown

in Figure 3.8(a), the compiler automatically adds a rectangle mark to depict the selection, and

instantiates translate to allow it to be repositioned (Figure 3.8(b)). In this context, project restricts

the interval to a single dimension (Figure 3.8(c)).

These speci�cations are an order of magnitude more concise than their Vega counterparts. With

Vega-Lite, users need only specify the semantics of their interaction and the compiler �lls in

appropriate default values. For example, by default, individual points are selected on click and mul-

tiple points on shift-click. Users can override these defaults, sometimes producing a qualitatively

di�erent user experience. For example, one can instead update selections on mouseover to produce a

“paint brush” interaction, as in Figure 3.7(c). In contrast, with Vega, users need to manually author

all the components of an interaction technique, including determining whether event properties

need to be passed through scale inversions, creating necessary backing data structures, and adding

marks to represent a brush component.

3.6.2 Explore & Encode with Zooming and Panning

Vega-Lite’s selections also enable accretive design of interactions. Consider our previous example

of brushing a scatterplot. We can de�ne an additional interval selection and initialize it using scales

(Figure 3.9). The compiler populates the selection with the x and y scale domains, parameterizes

them to use it, and instantiates the translate and zoom transforms. Users can now brush, pan

and zoom the scatterplot. However, the default de�nitions of the two interval selections collide:

dragging produces a brush and pans the plot. This example illustrates that concise methods for

overriding defaults can not only be useful (as in Figure 3.7(c)) but also necessary. We override

the default events that trigger the two interactions using Vega’s event selector syntax [179]. As
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Figure 3.9 shows, we specify that brushing only occurs when the user drags with the shift key

pressed.

By enabling this interaction through composable primitives (rather than a single, speci�c “pan and

zoom” operator [18]), Vega-Lite also facilitates exploring related interactions in the design space.

For example, using the project transform, we can author a separate selection for the x and y scales

each, and selectively enable the translate and zoom transforms. While such a combination may not

be desirable—panning only one scale while zooming the other—Vega-Lite’s selections nevertheless

allow us to systematically identify it as a possible design. Similarly, we could project over the

color or size channels, thereby allowing users to interactively vary the mappings speci�ed by these

scales. For example, “panning” a heatmap’s color legend to shift the data values considered high

and low density. If the selections were de�ned over the visual range, users could instead shift the

colors used in a sequential color scale.

3.6.3 Connect with Brushing and Linking

We can wrap our previous example, from Figure 3.9, in a repeat operator to construct a scatterplot

matrix (SPLOM) as shown in Figure 3.10. With no further modi�cations, all our previous interactions

now work within each cell of the SPLOM and are synchronized across the others. For example,

dragging pans not only the particular cell the user is in, but related cells along shared axes. Similarly,

dragging with the shift key pressed produces a brush in the current cell, and highlights points

across all cells that fall within it.

As its name suggests, the repeat operator creates one instance of the child speci�cation for the

given parameters. By default, to provide a consistent experience when moving from a unit to

a composite speci�cation, Vega-Lite creates a point instance of the selection that is populated

and shared between all repeated instances (Figure 3.10(a)). With the resolve property, users can

specify alternate disambiguation methods including unioning the brushes, or intersecting them

(Figure 3.10(b, c) respectively).
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With this example, it is more instructive to compare the amount of e�ort required, with Vega-Lite

and Vega, to move from a single interactive scatterplot to an interactive SPLOM. While the Vega

speci�cations for the two are broadly similar, the latter requires an extra level of indirection to

identify the speci�c cell a user is interacting in, and to ensure that the correct data values are used

to determine inclusion within the brush. In Vega-Lite, this complexity is succinctly encapsulated

by the resolve keyword which, as discussed, can be systematically varied to explore alternatives.

Mimicking Vega-Lite’s union and intersect behaviors is not trivial, and requires unidiomatic Vega

once more. Users cannot simply duplicate the interaction logic for each cell manually, as the

dimensions of the SPLOM are determined by data.

3.6.4 Abstract & Elaborate with Overview+Detail

Thus far, selections have parameterized scale extents through the initialization step. Previous

examples have demonstrated how visualized data can be abstracted/elaborated via zooming. In

Figure 3.11, we show how a selection de�ned in one unit speci�cation can be explicitly given as the

scale domain of another in a concatenated display. Doing so creates an overview+detail interaction:

brushing in the top (overview) chart displays only the brushed items at a higher resolution in the

larger (detail) chart at the bottom.

3.6.5 Reconfigure with the Index Chart

Figure 3.12, uses a point selection to interactively normalize stock price time series data as the user

moves their mouse across the chart. We apply the nearest transform, which calculates a Voronoi

tessellation to accelerate the selection. By projecting the date �eld, the point selection represents

both a single data value as well a set of values that share the selected date. Thus, we can reference

the point selection directly, to position the black vertical rule, and also materialize it as part of the

lookup data transform.
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3.6.6 Filter with Crossfilter

As selections provide a predicate function, it is trivial to use them to �lter a dataset. Figure 3.13,

for example, presents a speci�cation to enable �ltering across three distinct binned histograms. It

uses a repeat operator with a single-dimensional interval selection over the bins. The �lter data

transform materializes the selection of the backing datasets as a new dataset used in a separate

layer. Only data values that fall within the selection are displayed. As the user brushes in one

histogram, bars highlight to visualize the proportion of the overall distribution that falls within the

brushed region. As with other interval selections, the Vega-Lite compiler automatically instantiates

the translate transform, allowing users to drag brushes around rather than having to reselect them

from scratch.

3.7 Discussion

Vega-Lite is not only the �rst high-level visualization language to o�er a multi-view grammar of

interactive graphics but also a system that thousands of people use worldwide to create visualizations.

Here, we discuss some of these users, how Vega-Lite can facilitate scalable visualization, and its

limitations.

3.7.1 Broad Adoption of Vega-Lite

Vega-Lite is used for teaching in a book for practitioners [61], and in classes at Stanford, Carnegie

Mellon, Northwestern, the University of Maryland, the University of Washington, and others.

Researchers at various universities such as the University of Cambridge, University of Washington,

University of Pennsylvania, and Stanford use Vega-Lite as a tool (often via the Altair [211] bindings).

Vega-Lite is also used by newspapers such as the Los Angeles Times [6], research labs such as

CERN [161], and various companies including Apple, Microsoft Research, and Google.
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{ "data": {"url": "data/flights-2k.json"},
  "transforms": [{
    "calculate": "hours(datum.date)", "as": "hour"
  }],
  "repeat": {"column": ["hour", "delay", "distance"]},
  "spec": {
    "layer": [{
      "select": {
        "selectedBins": {
          "type": "single", "on": "mousemove",
          "encodings": ["x"]
        }
      },
      "mark": "bar",
      "encoding": {
        "x": {"field": {"repeat": "column"}, "type": "Q", "bin": true},
        "y": {"aggregate": "count", "type": "Q"},
        "color": {"value": "steelblue"}
      }
    }, {
      "transforms": [
        {"filter": {"selection": "selectedBins"}}
      ],
      "mark": "bar",
      "encoding": {
        "x": {"field": {"repeat": "column"}, "type": "Q", "bin":  true},
        "y": {"aggregate": "count", "type": "Q"},
        "color": {"value": "goldenrod"}
      }
    }]
  }
}

       Single-Point Layered Cross Filtering

       Multi-Point Layered Cross Filtering

{...,
  "select": {
    "selectedBins": {
      "type": "interval",
      "translate": true,
      ...
    }
  },...
}        Continuous  Layered Cross Filtering

a

b

c

{...,
  "select": {
    "selectedBins": {
      "type": "multi", 
      "on": "click", ...
    }
  },...
}

Figure 3.13: Layered cross �ltering interaction of binned histograms by (a) repeating a unit

speci�cation with a point selection that is materialized to serve as the input data for the second

layer. When a user hovers over a bar in one histogram, bars in the others highlight to depict the

distributions of the selected bin. By varying the selection type, users can (b) select multiple bins on

shift-click or (c) brush a continuous interval.
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Vega-Lite’s declarative format also enables sharing across applications and platforms. Both

Vega and Vega-Lite are included as the o�cial plotting formats in the JupyterLab [166] data

science environment. In addition, many third-party bindings have been created for programming

environments including Python [211], Elm [48], R [126, 212], Scala [214], Julia [213], and Clojure [214].

The feedback, especially from the Python community, has been positive. The developers of Altair, a

popular wrapper of Vega-Lite in Python, called Vega-lite and Vega

perhaps the best existing candidate for a principled lingua franca of visualization.

– The Altair team on their website

Another widely shared review of Python visualization libraries commented that

it is this type of 1:1:1 mapping between thinking, code, and visualization that is my

favourite thing about Altair [and the underlying Vega-Lite].

– Dan Saber [172]

Vega-Lite has also enabled many other research projects beyond this thesis. Our lab used Vega-Lite

to build recommendation systems [224, 225], develop an automatic model to reason about visualiza-

tion similarity and sequencing [113], and to build a model to reverse engineer visualizations [164].

Researchers at Stanford [56], Georgia Tech, and Princeton use Vega-Lite to build natural language

interfaces for data visualization and analysis. Vega-Lite is also popular in literate programming

environments [226]. The Vega-Lite formalism is used as an implementation-independent language

e.g., for augmented and virtual reality [185].

3.7.2 Vega-Lite for Scalable Visualization

Vega-Lite speci�cations are compiled to Vega speci�cations and then parsed by the Vega runtime

to generate both static images and interactive web-based views. The Vega runtime performs some

transformations of the data, including �ltering, binning, and aggregation, limiting the datasets to

the constraints of browsers. For large datasets, serialization and transfer from a backend such as a
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Jupyter Kernel and is another scalability bottleneck. We aim to run expensive computation should

in scalable backend systems such as databases and only transfer the results to the browser.

Declarative Vega-Lite and Vega speci�cations describe how data should be encoded visually and

how interactive visualizations should behave. The speci�cations leave execution concerns about

how the data is processed to the runtime engine. Our declarative design can enable a runtime

system that automatically splits computation across a scalable backend and a browser [150]. To

run such an interactive visualization, one must implement a custom Vega transform that can run

asynchronous queries in backend systems (such as OmniSci [170]) and inject the query results in

the Vega data�ow. If the queries are parameterized by our interaction primitives (i.e., selections

in Vega-Lite and signals in Vega [179]), then any interactive chart can be made scalable. A major

limitation of the naive approach of pushing all computation to a backend system are query and

data transfer latencies that can have negative e�ects on the user experience. We will discuss these

issues in chapter 5.

The main takeaway here is that the declarative design of Vega-Lite and Vega gives runtime systems

the �exibility to make visualizations scalable that otherwise cannot run entirely in the browser.

We have, however, not yet completed an implementation of such a runtime system.

3.7.3 Limitations

The examples demonstrate that Vega-Lite speci�cations are more concise than those of the lower-

level Vega language, and yet are su�ciently expressive to cover a static and interactive visualization

taxonomy. Moreover, we have shown how primitives can be systematically enumerated to facilitate

exploration of alternative designs. Nonetheless, we identify three classes of limitations that

currently exist.

First, there are limitations that are a result of how our formal model has been rei�ed in the current

Vega-Lite implementation. In an interactive Vega-Lite chart, components that are determined

at compile-time cannot be interactively manipulated. For example, a selection cannot specify
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alternate �elds to bin or aggregate over. Similarly, more complex selection types (e.g., lasso

selections) cannot be expressed as the Vega-Lite system does not support arbitrary path marks.

Such limitations can be addressed with future versions of Vega-Lite, or alternate systems that

instantiate its grammar. For example, rather than a compiler, interactions could parameterize the

entire speci�cation within a Vega-Lite interpreter.

A similar class of limitations stem from Vega-Lite’s focus on rapid authoring and high-level

abstractions. The current version of Vega-Lite does not expose the reactive data�ow de�ned by

signals [178]. Some of these barriers will be resolved in future versions of Vega-Lite. For example,

Vega-Lite 4 supports custom formatting expressions for axis, legend, and header labels. However,

e.g., de�ning custom signals or accessing signals in transforms is not yet supported.

Similar to limitations for arbitrary interactions, our implementation of static graphics is limited

by the combinatorial space of our building blocks, i.e., the mark types and encodings we have

implemented. For example, the current version of Vega-Lite does not support pie charts since

we have not yet added arc marks. The Vega-Lite community asks us to implement primitives for

animations, which we hope to do once Vega supports animations. Especially users with journalism

backgrounds commonly request support for lightweight annotations of charts. Other commonly

requested features revolve around integration with other JavaScript frameworks. As a user of

Vega-Lite, you are dependent on the developers to add support for basic building blocks whereas

as a user of D3, you have the power of JavaScript to implement new feature yourself. We share this

limitation with other declarative languages, which typically have a lower expressive ceiling than

imperative languages.

The second class of limitations are inherent to the model itself. As a higher-level grammar, our

model favors conciseness over expressivity. The available primitives ensure that common methods

can be rapidly speci�ed, with su�cient composition to enable more custom behaviors as well.

However, highly specialized techniques for interactions, such as querying time-series data via

relaxed selections [96], cannot be expressed by default. Fortunately, our formulation of selections,
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which decouple backing points from selected points via a predicate function, provide a useful

abstraction for extending our base semantics with new, custom transforms. For example, the

aforementioned technique could be encapsulated in a relax transform applicable to multi selections.

While our selection abstraction supports interactive linking of marks, our view algebra does not yet

provide means of visually linking marks across views (e.g., as in the Domino system [78]). Our view

algebra might be extended with support for connecting corresponding marks. For example, points

in repeated dot plots could be visually linked using line segments to produce a parallel coordinates

display.

Especially novice users of Vega-Lite often struggle to e�ciently debug declarative speci�cations.

The runtime hides execution details that connect input events, program state, the speci�cation, and

visual outputs. The Vega-Lite online editor [151] helps users with visual debugging tools [95] and

warns users when they commit common errors, but more work is needed to provide an equivalent

debugging experience to imperative languages.

Lastly, we designed Vega-Lite for authoring by machines (e.g., in Voyager [224] or Altair [211]) and

to be understandable by people. With Vega-Lite, we can describe visualizations. Our formalism

is, however, not well suited for reasoning about transformations and equivalences. Reasoning

about equivalences as in relational algebra enables sophisticated optimizations in databases [101].

Nonetheless, Vega-Lite can be useful to achieve formal reasoning over databases and visualizations

in the future [33]. Any formalism should aim to have at least the expressiveness of Vega-Lite.

3.8 Conclusion

To our knowledge, Vega-Lite is the �rst high-level visualization language to o�er a multi-view

grammar of graphics tightly integrated with a grammar of interaction. By o�ering this grammar,

Vega-Lite facilitates rapid exploration of design variations. We hope that it enables analysts to
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produce and modify interactive graphics with the same ease with which they currently construct

static plots.

Vega-Lite facilitates e�ective visualization design for interactive statistical graphics with a concise

grammar using a rule-based system of smart defaults. With Vega-Lite the runtime systems can

make low-level encoding decisions and optimize evaluation. The formalism already serves as the

basis of the CompassQL recommendation engine [223] in Voyager [224, 225]. In the next chapter

we show that be used for sophisticated reasoning including recommending scalable alternatives to

common chart types. The low-level Vega [177] formalism is already used in the high-performance

GPU database OmniSciDB [170]; Vega-Lite omits low-level data processing details and has more

potential for optimization. We do not believe that Vega-Lite’s formalism is mathematically rigorous

enough to facilitate cross domain optimizations, but it o�ers a starting point for a formal algebra

that models both data processing and visualization [33].

We end this chapter with a quote the author of the Grammar of Graphics who said about Vega-Lite:

Having gone through a lot of these GG-inspired systems, I believe yours is the most

authentic implementation. I’m using it every day. Thanks for all the great work you’ve

done. – Leland Wilkinson [222]
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4 Draco: Formalizing Visualization
Design Knowledge as Constraints
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{
 "data": {"url": "cars.csv"},
 "mark": "bar",
 "encoding": {
  "x": {
   "field": "Cylinders",
   "type": "ordinal"
  },
  "y": {
   "field": "Horsepower",
   "type": "quantitative",
   "aggregate": "mean"
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Figure 4.1: Draco compiles a user query to a set of rules and combines them with the existing

knowledge base (search space de�nition + preferences) into an Answer Set Program (ASP). It then

calls the Clingo solver to obtain an optimal solution and translates it to Vega-Lite.

To create e�ective visualizations, designers must consider the data domain and perceptual principles

for design. Existing work has attempted to formalize this design knowledge as logical rules. Even

though these rules are informed by perceptual research, they are engineered by hand, often only

cover a few chart types, and are not reused or automatically validated. Moreover, the primary

approaches used to apply these rules are now decades old, based on static models and greedy
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optimization methods. Rather than building idiosyncratic representations of design knowledge for

individual systems, in this chapter, we seek to make formal models of design knowledge a shared

resource that can be extended, tested, and provide the base for future research.

We realize this vision in Draco, a formal model that represents visualizations as sets of logical facts

(i.e., specifying choices of dataset, mark type, and visual encoding channels) and expresses best

practices and trade-o�s among design guidelines as a collection of hard and soft constraints over

these facts (e.g., one might prefer bars to start at zero). Draco is implemented as a constraint-based

system based on Answer Set Programming (ASP). Draco’s visualization description language is

based on the Vega-Lite (chapter 3) grammar and extends it to express characteristics about the

data (e.g., cardinality, skew) and task (e.g., summary, value). The constraints express preferences

validated in perceptual experiments and general visualization design best practices. We demonstrate

how to construct increasingly sophisticated automated visualization design systems, including

systems based on weights learned directly from the results of graphical perception experiments.

As a visualization tool, Draco automates the tedious and repetitive parts of authoring visualizations.

It can automatically synthesize e�ective designs from partial speci�cations as queries over the

space of visualizations (Figure 4.1). We model the input query as additional constraints and use

Draco to systematically enumerate the visualizations that do not violate the hard constraints and

�nd the most preferred visualizations according to the soft constraints. We formalize the problem

of �nding appropriate encodings as �nding optimal completions of partial inputs, which provides

well-de�ned semantics. A constraint solver with e�cient domain-independent search algorithms

replaces the otherwise necessary custom enumeration and scoring logic.

While Draco can synthesize visualizations in automated design tools, its applications go far beyond.

Using constraints, we can take theoretical design knowledge and express it in a concrete, extensible,

and testable form. Draco provides a platform for systematic discussions about visualization design.

The model formally describes trade-o�s among design guidelines. Researchers can now experiment

with di�erent trade-o�s to improve the science of visualization. They can systematically sample and
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enumerate the design space and concretely compare design models. Tool builders can use evolving

knowledge bases and bene�t from e�cient search algorithms provided by modern constraint solvers.

Using the implementation-independent language of constraints to model design knowledge could

accelerate the transfer of research into practical tools.

We published Draco at IEEE VIS 2018 (co-authored with Chenglong Wang, Greg L. Nelson, Halden

Lin, Adam M. Smith, Bill Howe, and Je�rey Heer) [137]. Draco is available as open source at

uwdata.github.io/draco.

4.1 Introduction

Visualization designers bene�t from familiarity with both the data domain under consideration and

principles of e�ective visual encoding. Although designers can learn these principles from books,

research papers, and experience, they do not always follow these principles in practice [20, 153].

Automated design tools [127, 224] are designed to help address this problem: they use formally-

encoded design guidelines to promote e�ective visualizations. However, our design knowledge is

incomplete and continually evolving. In order to incorporate new experimental results or compare

di�erent theories of e�ective design, we need to elaborate and re�ne these bodies of formal design

knowledge.

Visualization researchers regularly publish empirical study results of how people decode and

interpret visualizations (e.g., [85, 112, 167, 203]). However, new results often make their way

into practical tools slowly: even though our knowledge is evolving, we lack a shared medium for

representing and acting upon this knowledge. For example, existing automated design systems [127,

128, 130, 223] do not explicitly reuse the knowledge bases implemented in previous systems. Rather

than building idiosyncratic representations of design knowledge for individual systems, we seek to

make formal models of design knowledge a shared resource for the visualization community.

https://uwdata.github.io/draco/
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We present Draco, a formal model that represents visualizations as sets of logical facts and rep-

resents design guidelines as a collection of hard and soft constraints over these facts. Draco can

systematically enumerate the visualizations that do not violate the hard constraints and �nd the

most preferred visualizations according to the soft constraints. We �rst formulate a simple yet

powerful visualization description language based on the Vega-Lite grammar [177] and then extend

this language to express dataset and task characteristics. To represent design knowledge, we

contribute a set of extensible constraints that can encode expressiveness criteria [127], preference

rules validated in perception experiments, and general visualization design best practices.

We view the constraints in Draco as the starting point of an evolving knowledge base of design

considerations for researchers and tool designers to extend and use. Hard constraints must be

satis�ed (e.g., shape encodings cannot express quantitative values), whereas soft constraints express

a preference (e.g., temporal values should use the x-axis by default). By changing the weights

associated with soft constraints, we can trade o� the relative importance of these preferences.

However, updating these weights presents a challenge, as local changes may have unexpected global

e�ects. To update preferences in a principled way, we also contribute a method to automatically

con�gure weights from experimental data. By formulating this process as a learning to rank [121]

problem, we can begin to integrate knowledge scattered across various research papers into a single

system.

We implement Draco using Answer Set Programming, a domain-independent constraint program-

ming language. We formalize the problem of �nding appropriate encodings as the problem of

�nding optimal answer sets [70], which provides well-de�ned semantics and can be solved with

e�cient domain-independent algorithms.

We �rst evaluate Draco by using it to re-implement the APT [127] and CompassQL [223] automated

design tools, demonstrating Draco’s expressiveness and improved performance. We then show how

Draco can go beyond these systems by adding new constraints concerning data and a user’s primary

task. Instead of manually specifying weights, we learn them from two independent graphical
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perception studies [112, 173]. We compare the learned visualization model to a hand-tuned model,

demonstrating improved automated design suggestions. Finally, we describe how to extend Draco

to recommend scalable alternatives to common chart types that become perceptually overwhelming

with large data volumes.

Encoding design knowledge as constraints has many advantages from both practical and academic

perspectives [189]. Tool builders can use evolving knowledge bases of best practices instead of

(re)implementing ad-hoc rules, and can bene�t from the e�cient search algorithms provided by

state-of-the-art constraint solvers. Most importantly, an independent knowledge base may allow

anyone to formulate and disseminate design preferences as a small set of independent constraints

and/or weight updates. Accordingly, we believe Draco can accelerate the transfer of research

knowledge into practical tools. Researchers can also use Draco to systematically sample, enumerate,

and reason about the design space of possible visualizations, or to concretely compare di�erent

design models.

4.2 Related Work

Draco builds on prior work on automated visualization design systems, visualization speci�cation

languages, and constraint programming.

4.2.1 Automated Visualization Design

To recommend a visualization, automated design systems enumerate visual encodings that satisfy

both user-de�ned constraints (such as which �elds to visualize) and design constraints (Figure 4.2).

They then rank candidate visualizations by a utility function. These systems may return the top

encodings or perform subsequent clustering to avoid redundancy [223].

Mackinlay’s APT system [127] automatically designs graphical representations of relational data

using expressiveness and e�ectiveness criteria to prune and rank encoding choices. A visualization

is considered expressive if it conveys all the facts in the data, and only the facts in the data. A
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Graphical
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Figure 4.2: A model of automated visualization design tools, inspired by APT. One component

synthesizes a design from data and incomplete speci�cations, and the other renders the design.

Draco produces Vega-Lite speci�cations as output.

visualization is considered most e�ective when the information it conveys is more readily perceived

than with other visualizations. APT codi�es these design criteria. To ensure that charts are

expressive, APT prunes visualizations that violate expressiveness (e.g., using length to encode

categorical data). To optimize for e�ectiveness, APT uses a ranking of the accuracy of visual channels

broken down by the data type (quantitative, nominal, or ordinal) and an importance ranking of

the �elds the designer wishes to analyze. APT assigns the most e�ective (remaining) encoding

channel to the �elds in order of decreasing importance. APT demonstrates that visualizations

can be automatically designed by machines. With APT, Mackinlay developed a formal model for

analyzing visualizations.

The original APT system consists of roughly 200 rules in a declarative logic programming language.

The logic programming approach has many advantages over procedural approaches. First, it is

�exible and can be adapted with additional constraints. Second, global optimization can �nd

satis�able solutions that procedural approaches may fail to identify. Draco takes the logic program-

ming approach from APT but extends it in a few ways. The search strategy in APT is depth-�rst

search with simple backtracking, which is ine�cient for large design spaces. Draco uses a modern

constraint solver and a standardized representation language. APT is built on a graphical language

that is no longer used, whereas Draco synthesizes Vega-Lite, a more complete graphical language.
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Lastly, Draco can deal with multiple (possibly competing) criteria, which was beyond the scope of

APT.

The SAGE project [130] extends APT by considering additional data properties such as cardinal-

ity, uniqueness, and functional dependencies. We adopt this idea in Draco. Casner’s BOZ [29]

additionally models the low-level perceptual tasks of reading and comparing values. In addition

to value tasks, Draco’s model includes summary tasks involving aggregate properties of visual

ensembles [204]. ShowMe [128] uses heuristic rules to suggest encodings from groups of charts,

including trellis plots. Draco similarly models faceting of data into trellis plots.

While traditional systems rely on carefully designed rules and defaults, more recent systems like

Voyager’s CompassQL [223–225] use hand-tuned scores to specify �ne-grained criteria such as

space e�ciency and legibility based on encoding and data properties. Draco is most similar to

CompassQL and its weighted preferences. However, CompassQL is implemented in imperative

JavaScript. Moreover, like all prior systems presented in this section, it uses similar heuristics

and ad-hoc rules. In contrast, Draco’s learning approach o�ers a “programmatic” way to turn

experimental results into preference rankings.

4.2.2 Effective Visualization Design

To rank candidate visualizations, automated design tools use models of visual encoding e�ectiveness.

These models encode the insights of Bertin [15], Cleveland & McGill [41], and others that encoding

e�ectiveness varies depending on the visualized data type and related perceptual tasks. For example,

APT uses a ranking of encoding channels by data type informed by human-subject studies of visual

decoding performance. Other studies (e.g., [88]) con�rm and extend such rankings.

However, most work on e�ectiveness focuses on the performance of reading or comparing in-

dividual marks in a visualization. Recent work investigates the e�ects of reading ensembles of

visual elements [204]: for example, how users read aggregates [75], distributions, trends, or

correlation [85]. Experimental results from Kim et al. [112] and Saket et al. [173] analyze how
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e�ectiveness varies by task. These results also show that e�ectiveness varies with respect to

data characteristics, such as the cardinality or entropy of data �elds. Draco’s declarative design

can combine classical work on e�ectiveness using strict preference rules with recent work that

considers data and task characteristics in a single system. If activity-oriented [138] or low-level [8]

task taxonomies were expressed as constraints, they could be used in automated design systems.

To demonstrate this conceptually, we use a simple task classi�cation into value tasks for reading

and comparing values and summary tasks for comparing ensembles [112].

4.2.3 Visualization Specification

Automatic visualization tools synthesize graphical designs, which are abstract descriptions of visual-

izations (Figure 4.2). For example, the underlying language for APT describes graphical techniques

(e.g., color variation and position on axis) to encode information, whereas ShowMe [128] synthe-

sizes encodings using VizQL [84]. Following CompassQL [223], Draco uses a logical representation

of the Vega-Lite grammar [177], which we introduced in chapter 3.

In Draco, we focus on single views and faceted views (using the row and column encoding channels).

Previous work has focused on similarly restricted design spaces [113, 163, 223, 224]. This subset of

Vega-Lite is capable of expressing a variety of plots of both raw and aggregate data, including bar

charts, histograms, dot plots, scatter plots, line graphs, and area graphs.

Even though Draco builds on Vega-Lite, extensions of Draco are not restricted to what is expressible

in Vega-Lite. We could, for example, add a new mark type or encoding channel to Draco and write

constraints over these attributes. Even though we could not render synthesized visualizations

with Vega-Lite, we could reason about their design in Draco. With Draco, we can prototype new

language features.
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4.2.4 Constraint-Based Knowledge Representation

Constraint programming is a declarative programming paradigm with wide applications in schedul-

ing [64], graphical design [16], and natural language speci�cation [165]. A constraint program is

a set of constraints de�ning relations among several unknowns (i.e., variables) that must be or

should be satis�ed by its solutions. Constraints thus restrict the possible values that variables can

take, representing partial information about the variables of interest [10]. Solutions are computed

by constraint solvers via inference and search over the constrained space [100]. In visualization,

the design recommendation process (i.e., generating, testing [171], subsequent ranking) can be

modeled as a constrained combinatorial optimization problem.

The declarative nature of constraint programming allows users to focus on modeling high-level

knowledge, while delegating low-level algorithmic details to o�-the-shelf constraint solvers. In

contrast, imperative implementations of recommendation systems are often hard to implement

e�ciently and maintain. For example, CompassQL wastes resources in enumerating and evaluating

infeasible solutions. Changes in the speci�cation may require a complete overhaul of generators

with an imperative implementation [191]. When building on a constraint programming language

of su�cient expressiveness (such as beyond-NP reach of ASP technology), complex tests can be

folded into the generation part without inventing new algorithms [190].

In Draco, we model visualization knowledge using Answer Set Programming (ASP) [21, 118], a

declarative constraint logic programming language that seeks to balance expressivity, e�ciency,

and ease of use. ASP has been deployed in contexts such as decision support systems [144], product

con�guration [194], and educational game design [190]. Draco uses Clingo [69, 71], a state-of-the-

art answer set solver. Clingo leverages con�ict reasoning [72] and heuristics [68] to direct the

search process and e�ciently solve problems with up to millions of variables. The Clingo guide [67]

provides a comprehensive resource of the ASP language features that Draco uses (§3), advice for

how to model problems (§1 and §6), and documentation of the constraint solver (§7).
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4.2.5 Learning Preferences

Both CompassQL and Draco use weights of visualization features to trade-o� competing e�ective-

ness criteria. Although the weights can be de�ned by visualization experts, tuning these weights

involves ad-hoc choices that are di�cult to maintain and extend, especially when the visualization

model is complex.

Instead, the preference model might be learned from data. For example, VizDeck [111] learns a

linear scoring function that uses data statistics and chart type to predict users’ up/down votes

on presented charts. However, VizDeck’s model features only capture direct correlations between

data statistics and chart type, and its learning algorithm is limited to a small set of prede�ned

visualizations.

To improve expressivity and extensibility, Draco leverages domain knowledge from experts (in the

form of soft constraints) as visualization features. Draco’s preference model forms a Markov logic

network (MLN) [169], where the weights corresponding to soft constraints are learnable parameters

re�ecting preference levels. Draco can capture rich attribute relations using few expert-de�ned

rules due to the expressive and compact nature of MLNs [165, 187].

To train a recommendation model, a common practice is to use pairs of incomplete speci�cations

and their corresponding optimal completion [186]. However, for visualization, such training

datasets are not generally available and are hard to obtain because there typically does not exist a

single optimal completion. Instead, with Draco we take a learning to rank [121] approach, where the

preference model is learned from ordered pairs of visualizations (i.e., complete speci�cations). A

dataset of ranked pairs can either be harvested from experimental data based on human-subject

performance measures or solicited from experts. To learn a preference model, we use RankSVM [94]

over the structural features de�ned by Draco’s soft constraints.
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4.3 Background: Answer Set Programming

The building blocks of ASP programs are atoms, literals, and rules. Atoms are elementary propositions

that may be true or false. Literals are atoms A or their negation not A. Rules are expressions of

the form A :- L1, . . . ,Ln. where each L i is a literal. The atom A of a rule (also called its head) is

derivable (true) if all literals in the body (right of :-) L1, . . . ,Ln are true. A positive literal is true if

it has a derivation, and a negative literal not B is true if the atom B does not have a derivation.

For example, the rule light_on :- power_on, not broken. informally states that the light is on

if we can derive that the power is on and there is no reason to say that the lamp is broken [21].

Rules can be bodiless or headless. A bodiless rule, such as power_on :-., simply asserts the fact

that its head is true. A fact can also be stated using only its head, e.g., power_on.. Headless rules

of the form :- L0, . . . ,Ln are integrity constraints that derive false from their body. Thus, satisfying

the body L0, . . . ,Ln results in a contradiction.

An ASP program consists of a set of rules. Note that not in an ASP program means “not derivable”.

For example, given the two rules described above, power_on can be derived from a fact (our bodiless

rule), while broken cannot. Consequently, we can derive light_on. Such derivations are formally

de�ned as stable models[73] or answer sets: sets of atoms that are consistent with the constraints,

justi�ed by a derivation, and minimal with respect to unknown facts. Answer Set Programming

has a constructive �avor: negative literals need only be true, whereas positive ones must also be

provable.

On top of the stable model formalism, the language of ASP [66] introduces powerful modeling

constructs. Aggregate rules of the form l {A0, . . . , An} k are read as: at least l and at most k atoms

in the set {A0, . . . , An} are true. Aggregates can appear in the head or body of a rule and aggregate

rules can be used to de�ne a design space. We can eliminate answer sets with integrity constraints

(headless rules) to restrict the design space. Soft constraints are headless rules with an associated

weight and are written as :∼ L0, . . . ,Ln. [w]. Unlike hard constraints, soft constraints may be
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violated by a solution, but each violation of a soft constraint imposes a penalty (or cost) equal

to its weight w. Soft constraints can express preferences in the search. In a program with soft

constraints, an answer set is optimal if it minimizes the sum of weighted costs of all violated soft

constraints. Although one can express richer forms of optimization in ASP (such as Pareto optimality

for combining preferences without �rst establishing a �xed trade-o� between them) [70], the

weighting scheme for soft constraints is su�cient for the linear preference models we will learn

from data.

4.4 Modeling Visualization Design in Draco

In this section, we �rst describe how we model visualizations as sets of facts. We then explain the

design space of our model and how we can query the model with constraints. Modern constraint

solvers e�ciently search for optimal visualization speci�cations within a de�ned space. Imperative

systems, which use an exhaustive generate-and-test method, couple knowledge representation

and the algorithm for �nding e�ective designs. In Draco, solutions to the base problem of �nding

optimal designs should be found via automated search, whereas solutions to the higher level

problem of what preferences should be used and how competing preferences are resolved should

be determined by designers (via re�nement of the design space and preference de�nition).

The term “optimal” here does not refer to the de�nitively best or “correct” visual design, as this

would make two arrogant presumptions. First, the system would have to fully understand the

user’s intentions and their ability to read visualizations—an unlikely proposition. Visualization is

always an abstraction where choices are made about what to emphasize. Second, visual analysis is

an iterative process, involving any number of visualizations, not just a singular view. By “optimal”,

we refer to an optimal speci�cation according to a set of formally-de�ned preferences: the system

can �nd no other visualization that would be scored as preferred to this one. A user-facing

application can show more than just an optimal visualization, and a user may select between



73

multiple recommendations or re�ne their query until they have the right design(s) for their

task [223, 224].

4.4.1 Mapping Visualization Specifications to Logical Facts

A Vega-Lite speci�cation describes a single Cartesian plot with a backing dataset, a given mark

type, and a set of one or more encoding de�nitions for the visual channels. Figure 4.3 shows a

Vega-Lite speci�cation for a bar chart. Vega-Lite expects a relational table of records with named

�elds. The mark type speci�es the geometric objects used to visually encode data records. Possible

values include bar, point, area, line, and tick. The encodings determine how data �elds map to

visual properties of the marks. An encoding uses a visual channel such as spatial position (x, y),

color, size, shape, or text. A detail channel can be used to add group-by �elds in aggregate plots. An

encoding includes the data �eld to visualize and its given data type (nominal, ordinal, quantitative,

temporal). The data can also be transformed via binning, aggregation (sum, average, etc.), and

sorting. An encoding may specify scales that de�ne how the data domain maps to the visual range

or guides that visualize scales (axis and legend). Examples include whether a scale domain should

include zero or whether the scale is linear or logarithmic. If omitted, the Vega-Lite compiler will

infer defaults based on the channel and data type.

We represent the Vega-Lite speci�cation, user task, and data schema as a set of atoms. To enable

reasoning over atoms, we encode them as predicates (i.e., relations or functions). A predicate de�nes

what value is assigned to an attribute of a visualization speci�cation.

To set the mark type, we use a predicate mark/1.1 For example, mark(bar). de�nes that the

visualization should use the bar mark (i.e., assign the value bar to the attribute mark).

To de�ne an encoding, we use encoding/1 to establish that it exists. For example, encoding(e).

declares the encoding e. We then use binary predicates to de�ne properties of the encoding.

1Per Prolog traditions, predicates are identi�ed by their symbolic name and the number of arguments they take
(signi�ed with /n).
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mark(bar).

encoding(e0).
channel(e0,x).
type(e0,ordinal).
field(e0,cylinders).

encoding(e1).
channel(e1,y).
type(e1,quant).
field(e1,horsepower).
aggregate(e1,mean).

{
 "data": {"url": "cars.csv"},
 "mark": "bar",
 "encoding": {
  "x": {
   "field": "Cylinders",
   "type": "ordinal"
  },
  "y": {
   "field": "Horsepower",
   "type": "quantitative",
   "aggregate": "mean"
  }
 }
}
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Figure 4.3: An example of a bar chart, its speci�cation (in Vega-Lite JSON), and its equivalent

speci�cation using Draco constraints (in ASP). The speci�cation de�nes themarktype and encodings,

which includes a speci�cation of the �elds, data type, and data transformations.

channel(e,x). de�nes that the encoding e uses the x encoding channel. The �eld being visualized

is de�ned with field/2. In addition, we use aggregate/2 to de�ne an aggregation function, bin/2

to discretize continuous data, stack/1 to de�ne whether marks should be stacked, and zero/1 and

log/1 to customize scales. Compared to Vega-Lite’s JSON syntax, we un-nest scale properties to

simplify the logical encoding.

The data schema is de�ned as the size of the data num_rows/1 (e.g., num_rows(42).) and facts

about data �elds. We use fieldtype/2 to specify the data type (string, number, date, . . . ) and

cardinality/2 to de�ne how many distinct entries there are, entropy/2 to de�ne the entropy,

and extent/3 to set the minimum and maximum values. We see this set of data attributes as a

starting point; future extensions of Draco can de�ne other features relevant to automated design.

We currently model a user’s primary task as a single function task/1. Following Kim et al. [112],

we distinguish between value and summary tasks. Since tasks regard speci�c �elds (e.g., “What

is the maximum acceleration across cars?”), �elds can be marked as relevant to the task with

interesting/2.
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We designed this logical visualization language to be extensible and enable reasoning. For example,

we could have de�ned predicates for each channel such as field_x, aggregate_x. This design

would automatically ensure that each channel is only used once; however, it would limit the

expressiveness of the language (e.g., detail can in fact be used multiple times) and would make it

more di�cult to de�ne general constraints over attributes that are not tied to a speci�c channel.

One way of extending Draco is to de�ne new attributes as predicates. For example, to add a data

property that measures data skew, we can add kurtosis/2 where the �rst argument is the �eld

and the second is the kurtosis measure.

4.4.2 Representing Design Knowledge as Constraints

The goal of a visualization model is to distinguish desirable visualizations from undesirable ones.

In Draco, our visualization model consists of two parts: the space of all visualizations considered

valid, and an evaluation function over the space to measure preferences. Figure 4.4 illustrates the

design space. We describe a visualization model in Draco as a declarative answer set program.

4.4.2.1 Design Space Definition

The design space of a visualization model is de�ned by a set of constraints. A visualization is

considered valid only if all constraints are satis�ed. Following best practices in logic program

design [117], we de�ne the space of possible visualization speci�cations with two sets of rules: (1)

a set of aggregate rules that speci�es the domains of the attributes de�ned in the previous section

(mark, encoding, . . . ) and (2) a set of integrity constraints that de�nes how di�erent attributes

can interact with each other.

We use aggregate rules to de�ne which values can be assigned to a visualization attribute. For

example, the rule 1 { mark(bar); mark(line); mark(area); mark(point) } 1. restricts

choices of mark to one of bar, line, area or point. Similarly, we can use the constraint 0 {

aggregate(E,count), aggregate(E,mean), aggregate(E,median), aggregate(E,sum) } 1 :-

encoding(E). to declare that each encoding may have up to one aggregate of count, mean, median,
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Figure 4.4: Illustration of the design space in Draco. The set of valid Vega-Lite speci�cations is a

subset of all possible visualizations, and Draco’s design space overlaps with that subset. Given a

preference model, expressive visualizations are ranked according to their preference scores in the

model. Draco eliminates ill-formed or non-expressive speci�cations using hard constraints and

encodes preferences using soft constraints.
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or sum. Note that E is capitalized, which identi�es it as a variable. To extend the domain of an

attribute (e.g., support tick marks), we would add facts to existing aggregate rules (e.g., by adding

mark(tick)). The complete list of aggregate rules, and all other constraints in this section, are

included as supplemental material.

The aggregate rules declare the domain of attributes, but not the validity of interactions of di�erent

attribute values. To capture such interactions, we introduce an additional set of constraints. Using

ASP notation, we write these constraints as a headless rule (integrity constraint). :- X. is read as

“it cannot be the case that X”. Integrity constraints can be used to encode expressiveness and restric-

tions to the attributes of a visualization speci�cation, for example, to match the implementation of

Vega-Lite.

First, we use constraints to rule out speci�cations that do not specify a valid visualization (i.e.,

that are ill-formed or ungrammatical). We call these constraints well-formedness constraints. For

example, the constraint :- channel(_,shape), not mark(point). is an integrity constraint

stating that it cannot be the case that there exists a shape encoding unless the mark that is used to

encode data is “point”, as other mark types such as area, line, bar, or text cannot encode a shape.

Another example is :- log(E), zero(E)., which ensures that we do not synthesize a log scale

that requires zero in its domain. We also assert that visualizations must use a text mark when

the text channel is used (and vice versa) and that only discrete data can be mapped to facet (row

and column) channels. Well-formedness depends on the syntax and semantics of the graphical

language. We can use constraints to generate only visualization speci�cations that are supported

by a concrete visualization model such as Vega-Lite. For example, Vega-Lite only implements 8

shape types; we can use the integrity constraint :- channel(E,shape), cardinality(E,C), C

> 8. to model this restriction. When de�ning the design space, con�icting constraints must be

avoided, as they result in an empty space that cannot be satis�ed by any visualization.

Second, we use constraints to eliminate non-expressive visualizations that do not convey all and

only the facts in the data. For example, :- mark(bar), channel(E,y), continuous(E), not
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zero(E). ensures that the model will not consider vertical bar charts that do not use zero as a

baseline. (We actually implement this as a more general rule :- mark(bar), channel(E,(x;y)),

continuous(E), not zero(E)., which also covers horizontal bar charts. Here the semicolon

denotes an expansion into disjunctions, implying one constraint for each channel type.) Another

expressiveness constraint is :- channel(E,size), type(E,nominal)., which ensures that size is

not used to encode nominal data, as size implies an order. We also assert that the size channel is

only permitted for compatible marks, that zero baselines are used for area and bar charts, and that

bar charts with a color channel encoding use stacking so that bars do not occlude each other.

4.4.2.2 Preference Over the Design Space

We now de�ne an evaluation function over the visualization design space to encode preferences.

The (linear) evaluation function maps a valid visualization speci�cation into an integer representing

its preference level. This function de�nes a total ordering over the design space, as illustrated

in Figure 4.4. Instead of de�ning the evaluation function as a procedure, we use a set of soft

constraints to implicitly de�ne it. The weight of a soft constraint re�ects its strength: the higher

the weight (penalty), the higher cost that violating the constraint imposes on the cost of an answer

set.

Soft constraints are similar to integrity constraints, but start with :∼ instead of :- and include a

weight declared in square brackets. They can be read as “prefer not to . . . ”. As an example, the

soft constraint :~ continuous(E), not zero(E). [5] states that the model prefers to include

zero for continuous �elds and that violating the rule increases the cost of the visualization by 5. A

soft constraint is appropriate: though omitting a zero baseline for ratio data can mislead [153], it is

still sometimes reasonable to do. Note that a visualization may violate a soft constraint multiple

times. For example, given a visualization with two encodings, the soft constraint above may be

violated twice if two of its encodings use continuous �elds but omit zero.

In order to extend Draco to support new visualization types or data properties, a visualization

expert can add soft constraints to capture intended preferences. For example, in order to extend a
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visualization model to handle the relation between the new data property kurtosis (as discussed

in the previous section) and using a log scale, we add the soft constraint :~ kurtosis(F,K),

field(E,F), log(E), K > 42. [w].

The set of soft constraints de�nes a cost model for visualizations in the design space that we can

use to evaluate preferences. The cost of a visualization is the sum of the costs of all soft constraint

violations multiplied by their count of violations. Concretely, given a set of soft constraints

S = {(p1,w1), . . . ., (pm,wm)}, the cost of a visualization speci�cation v is calculated as follows,

where npi is the number of violations of the soft constraint pi by v:

Cost(v)= ∑
i=1...k

wi ·npi (v)

Given a visualization v, the vector x = [np1(v), . . . ,npk (v)] fully determines the cost of v in the

given visualization model, and we refer to x as the feature vector of v. Using the feature vector x,

the cost of v can be represented as Cost(v)= xTw, where w= [w1, . . . ,wk] is the vector consisting

of all soft constraint weights. Note that setting the weight w for this new rule requires the expert to

know the existing constraints and carefully trade-o� among competing preferences. In section 4.5,

we instead present a method to learn w from data.

4.4.3 Preference Models as Markov Logic Networks

Draco’s preference model forms a Markov logic network (MLN), a graphical model that integrates

logic with statistical reasoning to handle uncertainty robustly [169]. This interpretation as an MLN

o�ers theoretical insight into the expressiveness of our model. The soft constraints are structural

features of visualizations that capture hidden relations among visualization attributes, and their

weights are learnable parameters re�ecting their importance. These weights re�ect the di�erence

in log probability between a visualization satisfying the constraint and one that does not. The joint

distribution modeled by a MLN is:

P(v)= e−Cost(v)∑
u∈V

e−Cost(u) =
e−

∑k
i=1 winpi (v)∑

u∈V
e−

∑k
i=1 winpi (u)



80

The probability P(v) of a visualization in the distribution is its exponentiated cost normalized

by the exponentiated costs of all visualizations in the design space V , using a softmax function.

Note that the partition function Z =∑
u∈V e−

∑k
i=1 winpi (u) is a �xed term in a given visualization

model, and the di�erence of costs of two visualizations v1,v2 results in the log di�erence of their

probability in the model.

The problem of �nding the optimal completion of a partial speci�cation is the same as performing

maximum a posteriori (MAP) inference in the probability model [186]. Given a partial speci-

�cation Y , its optimal completion X maximizes the posterior probability of P(x | y = Y ) (i.e.,

X =maxx P(x | y=Y )). The ASP solver solves this inference problem e�ciently by minimizing the

overall cost of the generated visualization; it is not necessary to compute the partition function.

Since a MLN is a linear model over structural features rather than linear model directly over

attributes, it has the advantage of capturing structural relations between attributes that cannot be

captured otherwise. For example, a channel ranking that is independent of the data type would

have to prefer color and size independent of the data type. Moreover, as opposed to explicitly

representing correlations between every attribute and all other attributes, a MLN is more compact

and interpretable.

4.4.4 Completing Specifications by Solving Constraints

Given a visualization model, a user can query said model for optimal completions of a partially

speci�ed visualization. Figure 4.6 illustrates the search process, while Figure 4.5 summarizes our

implementation of it.

4.4.4.1 Partial Specification

A user’s query is a partial speci�cation that describes their incomplete intent for a desired vi-

sualization. Our partial speci�cation language allows the user to specify unknown visualization

attributes by leaving them blank. Draco also supports converting CompassQL queries and Vega-Lite
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calls Clingo to solve the program to obtain the optimal answer set. Finally, Draco translates the
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space illustrated in Figure 4.4. Draco selects the optimal visualization (X) within the remaining

space.
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{
"data": { "url": "cars.csv" },
"encoding": [ {"channel": "x", "bin": true,

"field": "horsepower"} ]
}

Figure 4.7: An example query over the cars dataset, in the form of a partial (incomplete) Vega-Lite

speci�cation.

speci�cations into queries. In addition to a partial speci�cation, a query can specify the schema of

the dataset and the user’s primary task.

As an example, Figure 4.7 shows a query over the classic cars dataset [4]. In this query, the user

speci�es that “I want a visualization that shows binned horsepower along the x-axis”. Using this

query, Draco must then determine completions of the mark and other attributes of the speci�ed

encoding, as well as whether other encodings are necessary. Draco then searches to �nd the

mark for the chart, completes the speci�ed encoding, and potentially adds additional encodings

(including which channels to use, whether to use aggregation, etc.).

4.4.4.2 Queries as Constraints over the Design Space

To answer a query, Draco �rst compiles the query into a set of facts and constraints that de�nes a

subspace of visualizations and then searches over the subspace for the lowest-cost speci�cations

(Figure 4.6). Concretely, the subspace is de�ned by (1) a set of facts describing the dataset speci�ed

in the query (subsection 4.4.1) and (2) a set of constraints that restrict the available choices for

visualization attributes.

For example, the query in Figure 4.7 is compiled into a set of facts and constraints. Unless the

data schema is provided explicitly, Draco infers a schema (including �elds, their types, and data

properties) from the provided dataset (“cars.csv”) and uses it to generate facts that describe the

dataset’s size and �elds:
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num_rows(407).

fieldtype(name,string).

cardinality(name,311).

fieldtype(miles_per_gallon,number).

cardinality(miles_per_gallon,130).

...

Based on the partial speci�cation, Draco then generates a fact declaring an encoding e1 and

associated constraints. These constraints restrict the design space to speci�cations with an encoding

e1 that uses the x encoding channel for binned values from the horsepower field:

encoding(e1).

:- not channel(e1,x).

:- not field(e1,horsepower).

:- not bin(e1,_).

To �nd optimal speci�cations within the subspace, Draco sends data constraints, query constraints,

and constraints from the knowledge base to the Clingo solver (Figure 4.5). For example, Draco

suggests the following optimal completion of the query above, which adds a new encoding e2 on

the y-axis for a count aggregate.

encoding(e2).

channel(e2,y).

aggregate(e2,count).

Finally, Draco converts the optimal solutions to Vega-Lite speci�cations and returns them to the

user.

4.5 Learning Preference Models

Although it is possible for model designers to tune preference weights for small models, tuning

weights for complex models is challenging: it requires the visualization expert to reason globally

about competing conditions among di�erent preferences. In this section, we describe a learning
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algorithm that allows the model to learn soft constraint weights w= [w1, ...,wk] from ranked pairs

of visualizations.

We learn weights using a RankSVM (Rank Support Vector Machine) model [94] trained on labeled

visualization pairs. Given a visualization pair (v1,v2), the cost model should determine whether v1 is

preferred to v2 based on sign(Cost(v1)−Cost(v2)). This model can be learned from a dataset where

each entry (v1,v2; y) is a visualization pair associated with a label y indicating if v1 is preferred

to v2 (y = −1) or vice versa (y = 1). Given a visualization model with a set of soft constraints

S = {p1, . . . , pk}, we show how we train the cost model (i.e., training weights w= [w1, ...,wk] for

S) using a dataset D = {(v11,v12; y1), . . . , (vn1,vn2; yn)}.

As shown in subsubsection 4.4.2.2, the cost of a visualization v is determined by its feature vector

x= [np1(v), . . . ,npk (v)]. Accordingly, we �rst run Clingo on the complete speci�cations and count

how often each soft constraint is violated to vectorize all visualizations in the dataset D and obtain

their vector representation: D′ = {(x11,x12; y1), . . . , (xn1,xn2; yn)}.

The cost model is a linear model over soft constraint weights. Given a pair (v1,v2) with feature

vectors x1,x2, its class is determined by the sign of the following function:

f (v1,v2)=Cost(v1)−Cost(v2)=wT(x1 −x2)

Using the RankSVM algorithm to train weights w, we perform linear regression (with L2 regu-

larization) over the dataset D′ by minimizing the hinge loss. The loss function L is de�ned as

follows, and it is minimized by the solution w∗.

L = 1
n

k∑
i=1

max
(
0,1− yiwT(xi1 −xi2)

)
+λ‖w‖2

w∗ = argminw L

As the cost model is a linear model over inputs (xi1 −xi2), the weights w∗ can be e�ciently found

using an o�-the-shelf linear optimizer. By minimizing the loss function L, we obtain a cost
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model with weights w∗ that is most consistent with the rankings of visualization pairs in the

dataset. The order of v1,v2 in a visualization pair from the training data does not matter, as the

classi�cation problem is symmetric with respect to the origin (−yiwT(xi1−xi2)= yiwT(xi2−xi1)

in the loss function). Thus, a pair (v1,v2; y) is equivalent to (v2,v1;−y) in the training set, and

we can standardize all pairs in the form (v1,v2;−1) (such that v1 is preferred over v2) without

worrying about an imbalance between classes. For our initial experiments, we set the regularization

parameter λ to 0.1.

By integrating the learned weights w∗, the visualization model becomes a knowledge base for

visualization recommendation that integrates both expert knowledge and empirical data.

4.6 Demonstration of Draco

We present three applications of Draco to demonstrate its expressivity, extensibility, and usability.

First, we implement APT’s preference rules via a set of strict preference constraints (Draco-APT);

this shows Draco can express a classic yet useful automated design system. Next, we reimplement

CompassQL by adding soft constraints with weights hand-tuned by experts to match the semantics

of CompassQL (Draco-CQL). Finally, we introduce additional e�ectiveness criteria learned from data

from two di�erent studies (Draco-Learn); this shows how Draco can partially automate combining

e�ectiveness results from di�erent research studies.

4.6.1 Reimplementing APT: Draco-APT

Draco-APT provides a re-implementation of APT’s channel preferences as a set of soft constraints.

APT uses a principle of importance ordering: each �eld is assigned to the most e�ective channel

(for the corresponding data type) in order of decreasing user-speci�ed importance.

Draco-APT starts with the set of well-formedness and expressiveness constraints from subsec-

tion 4.4.2. We add a set of soft constraints to express channel preferences. Each preference

constraint is of the form :~ type(E,T), channel(E,C), priority(E,P). [w@P,E], which states
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that for any encoding E, using channel C for a �eld of type T incurs a cost of w at priority level P

equivalent to the priority of the �eld. To determine the optimal solution, the solver �rst satis�es

all hard constraints followed by soft constraints, ordered by priority level.

:~ type(E,quant), channel(E,x), priority(E,P). [1@P,E]
:~ type(E,quant), channel(E,y), priority(E,P). [1@P,E]
:~ type(E,quant), channel(E,size), priority(E,P). [2@P,E]
:~ type(E,quant), channel(E,color), priority(E,P). [3@P,E]

:~ type(E,ordinal), channel(E,x), priority(E,P). [1@P,E]
:~ type(E,ordinal), channel(E,y), priority(E,P). [1@P,E]
:~ type(E,ordinal), channel(E,color), priority(E,P). [2@P,E]
:~ type(E,ordinal), channel(E,size), priority(E,P). [3@P,E]

:~ type(E,nominal), channel(E,x), priority(E,P). [1@P,E]
:~ type(E,nominal), channel(E,y), priority(E,P). [1@P,E]
:~ type(E,nominal), channel(E,color), priority(E,P). [2@P,E]
:~ type(E,nominal), channel(E,shape), priority(E,P). [3@P,E]
:~ type(E,nominal), channel(E,size), priority(E,P). [4@P,E]

Using Draco-APT, we can �nd optimal completions of partial speci�cations using APT’s e�ectiveness

criteria. For example, given a query with four �elds with decreasing priority—two quantitative

�elds (encoded as e_q1 and e_q2), one nominal �eld (e_n), and one ordinal �eld (e_o)—Draco-APT

synthesizes the following two optimal results.

1 channel(e_q1,y) channel(e_q2,x) channel(e_n,color) channel(e_o,size)

2 channel(e_q1,x) channel(e_q2,y) channel(e_n,color) channel(e_o,size)

4.6.2 Reimplementing CompassQL: Draco-CQL

We now show that Draco is expressive enough to re-implement CompassQL [223], a state-of-

the-art automated visualization design system that includes additional forms of e�ectiveness

knowledge. We compare the original CompassQL implementation with our new implementation,

showing Draco-CQL is more concise, extensible, and provides superior performance when searching

for optimal visualizations.

CompassQL uses a generate-and-test approach [171]: for a given partial speci�cation, CompassQL

generates all matching full speci�cations. The changes made to the partial speci�cation may
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include both data query parameters (e.g., �elds, aggregation) and encoding parameters (e.g.,

channels). It then uses data query, encoding, and expressiveness constraints similar to those

described in subsection 4.4.2 to eliminate invalid encodings. The system then assigns each valid

candidate an e�ectiveness score. The scoring function incorporates preferences for type-channel

interactions (e.g., it is preferred to encode nominal �elds using x or y before using row or column)

and mark-type interactions (e.g., point marks are preferred over tick marks for quantitative by

quantitative plots). These e�ectiveness scores are then used to rank and recommend visualizations.

Critically, this approach allows CompassQL to trade o� among competing preferences.

We identi�ed two places for improvement in the process taken by CompassQL. First, CompassQL

generates and tests all possible candidate visualizations, which leads to an ine�ective exhaustive

search. By expressing the hard constraints as integrity constraints, we can pass this process o� to

a modern constraint solver. Moreover, ASP allows for concise representations. For example, the

constraint that invalidates encodings that reuse channels that should only be used once, requires

14 lines of JavaScript code in CompassQL but can be expressed in Draco as :- single_channel(C),

2 { channel(_,C) }., stating that we prefer not to use a single channel 2 or more times.

Second, CompassQL’s scoring function can be expressed naturally in Draco with soft constraints.

For example, CompassQL penalizes aggregation when grouping by a continuous �eld, implemented

in 12 lines of code Figure 4.8. Draco’s implementation is more concise and readable:

:~ aggregate(_,_), continuous(E), not aggregate(E,_). [3].

Reimplementing CompassQL in Draco requires authoring soft constraints that express CompassQL’s

imperative rankings and design preferences. These constraints include channel, mark type, and

aggregation function rankings as well as soft constraints to prefer compact layouts (e.g., fewer

encodings) or promote best practices such as placing time on the horizontal axis. For example,

channel preferences for nominal �elds can be expressed as follows, where lower weights (penalties)

indicate higher preference:

:~ channel(E,y), type(E,nominal). [0]
:~ channel(E,x), type(E,nominal). [1]
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Figure 4.8: A comparison of generated aggregate charts to demonstrate design choices. The chart

to the left aggregates over a continuous grouping �eld, which is unlikely to be e�ective. The more

sensible chart to the right instead groups according to a discretized (binned) version of the same

�eld. Both CompassQL and Draco prefer the right design.

:~ channel(E,row), type(E,nominal). [6]
:~ channel(E,column), type(E,nominal). [7]
:~ channel(E,color), type(E,nominal). [7]
:~ channel(E,shape), type(E,nominal). [8]
:~ channel(E,text), type(E,nominal). [9]
:~ channel(E,detail), type(E,nominal). [20]

Using a full set of these constraints, Draco-CQL synthesizes identical optimal speci�cations as

CompassQL for all 17 partial speci�cations included in CompassQL’s test suite. It does so while

reducing speci�cation complexity. Draco-CQL is implemented as 70 hard and 110 soft constraints.

In contrast, CompassQL is implemented in 4,324 lines of imperative code, with 1,134 of those

lines devoted to hard constraints and 786 devoted to scoring logic.

Draco-CQL also exhibits better performance, especially for highly unconstrained problems. Fig-

ure 4.9 shows the results of a benchmark study comparing CompassQL and Draco-CQL across

varied numbers of input dataset �elds and output encoding channels. All measurements were taken

on CentOS Linux 7 with an Intel Xeon CPU E5-2690 v3 with 2.60GHz; CompassQL used Node v9.9.0.

Other than a constant startup overhead, Draco exhibits superior scalability. On a real dataset with
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Figure 4.9: Median runtime for CompassQL (blue) and Draco (orange) across di�erent numbers of

data �elds and encodings. CompassQL performance rapidly degrades with additional encodings

and runs out of heap memory (set to 4GB) for most queries with four or more encodings because it

exhaustively searches all combinations of �elds in the schema.

25 �elds and a query with 5 encodings, Draco returns an answer in less than half a second. In

contrast, CompassQL’s exhaustive search runs out of heap memory after a few minutes.

4.6.3 Learning Preferences from Experiments: Draco-Learn

When developing automated visualization design systems, developers may hand-tune weights until

the system synthesizes the desired speci�cations across test cases. This process is time-consuming

and error-prone. Instead, Draco can automatically learn parameters from data. Draco’s preference

model allows competing preferences and, via learning to rank, can learn weights for soft constraints

from ranked pairs of visualizations. The same generalizability and validity issues that all empirical

studies have also apply to Draco’s empirically learned weights. Draco’s �exible learning system

allows us to harvest training pairs from data originating from di�erent experimental studies, even

those carried out under di�erent conditions.
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To demonstrate this advantage, we harvested ranked pairs from two recent experiments on e�ec-

tiveness. Kim et al. [112] measured subject performance across task types and data distributions.

They compared performance across 12 scatterplot encoding speci�cations of trivariate data involv-

ing 1 categorical and 2 quantitative �elds, encoded with x and y channels along with the color,

size, or row channel - in total, 185,000 responses from 1,920 participants. The visualizations

tested by Kim et al. are only a fraction of the design space that Draco supports; thus, we are not

able to learn the weights of a system that can compete with CompassQL from this data alone.

Saket et al. [173] conducted a similar experiment with 180 participants to evaluate task performance

across visualization types. Their study is limited to encodings with one quantitative y-encoding

with a mean aggregate, and an x-encoding with nominal, ordinal, or quantitative data.

4.6.3.1 Harvesting Training Data and Learning Weights

For both studies, the data contains the visualization type, data properties, task, and whether the

user correctly completed the task. To create ranked pairs, we �rst group the response data by data

schema and task. Within each group, we group again by visualization and create every possible

pair. The di�erence in task performance between the visualizations in each pair may or may not be

signi�cant. We use Fisher’s test to check whether the accuracy scores are signi�cantly di�erent

between the two visualizations. We keep only pairs where the p-value is lower than a threshold (in

our case 0.01). We consider both accuracy and timing results and include a pair if either exhibits

a signi�cant di�erence. Ranked pairs of visualizations could be harvested from other studies in

a similar fashion. Our harvesting results in about 1,100 pairs from Kim et al. and 10 pairs from

Saket et al. We get few pairs for Saket et al. because for each data and task combination, only three

visualizations are compared (Vega-Lite supports bar, line, and scatter) and few exhibit signi�cant

di�erences.

We then apply the learning approach described in section 4.5. First, we transform every visualization

that appears in the dataset into a feature vector of soft constraint violation counts in Draco. We start

with Draco-CQL’s constraints and add soft constraints for the preferences described in Kim et al.’s
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paper. Speci�cally, we added rules to capture task-channel and task-marktype interactions, along

with a handful of rules for the most important interactions from the discussion of the paper (see

supplemental material for a full listing). We implemented these rules in a few hours. These

preference rules can be also included in the CompassQL implementation from the previous section,

as we can simply initialize the weights for new constraints to zero. With the new rules, we train a

classi�er on the di�erence between the two feature vectors for each pair of ranked visualizations

using RankSVM. We trained an o�-the-shelf SVM from scikit-learn [156] on the two datasets

derived from the studies by Kim et al. and Saket et al.

4.6.3.2 Applying the Learned Model

We �rst evaluate our trained model directly on ranked pairs by measuring the percentage of pairs

that are correctly ranked based on their costs. We train our model on a training set of 55% of

the full data, validate on 15% of the data, and assess generalization of the �nal model with 30%

test data [86]. The trained model achieves 93% accuracy on the test set, whereas Draco-CQL with

hand-tuned weights achieves 65% accuracy—only slightly better than chance. Our model achieves

perfect training accuracy on the dataset from Saket et al. even if we include all data harvested from

Kim et al. Our model was able to learn from di�erent datasets without degrading performance in

either of them. The model correctly labels 96% of the validation dataset when we increase the

p-value threshold for harvesting from 0.01 to 0.1. We also found that the test accuracy only starts

to signi�cantly fall behind the validation accuracy when we train on less than 250 pairs. This

observation indicates that there is redundancy in the data and that our model generalizes. These

results support our model and feature selection choices.

In practice, �nding the optimal encoding given a dataset, task, and partial speci�cation matters

more than accuracy across all ranked pairs of visualizations. For example, correctly ordering the

second and third best visualizations may matter less than getting the optimal encoding right. We

built Draco-Learn using only the trained weights for the soft constraints in our preference model.

First, we restrict the design space to only those encodings used in Kim et al. and Saket et al.’s
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studies (as described at the beginning of this section) by adding about 10 additional constraints each

(included in supplemental material). Adding these constraints adapts Draco-Learn to synthesize

only speci�cations that are in a restricted design space. We then query Draco-Learn to synthesize

speci�cations for all combinations of data properties (cardinality and entropy) and tasks (value

and summary). In all conditions (48 for Kim et al., 8 for Saket et al.), Draco-Learn returns a

top-performing encoding for the harvested data.

Draco-Learn outperforms Draco-CQL within the restricted design space covered by the experimental

data. Figure 4.10 shows the optimal visualizations synthesized by Draco with default weights

(Draco-CQL) and with learned weights (Draco-Learn) for a speci�cation with three encodings

across value and summary tasks. In Draco-CQL, the weights for all features related to task are

zero. Consequently, Draco-CQL synthesizes the same speci�cation regardless of task: a scatterplot

with the primary variable (Q1) on y and category (N) on color. Draco-Learn synthesizes di�erent

charts depending on the task. To compare individual values, the scatterplot works well and reduces

overplotting. However, to summarize Q1 relative to N, spatially grouping values by category (N)

better facilitates perception of distributional properties such as min, max, or average [112].

4.6.4 Recommending Perceptually Scalable Designs

Data-intensive analysis routinely produces perceptually overwhelming visualizations (e.g., a

scatterplot with a billion points). Here, we outline how an extended Draco recommendation model

can address these perceptual scalability issues and suggest scalable alternatives (e.g., a heatmap

instead of a scatterplot [175] or density visualizations of many series instead of line charts [132]).

Even though we outline how Draco can be extended, more work is needed to de�ne a comprehensive

set of guidelines and derived rules for various chart and data types.

Since Draco �nds the complete design that extends a partial input with the least cost, we have to

develop a model—consisting of constraints and weights—that penalizes perceptually overwhelming

designs. These designs are characterized by overplotting, too many marks, and excessively large
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Figure 4.10: The optimal visualization synthesized by Draco with hand-tuned weights (left) and

Draco with learned weights (right) for two queries with varying tasks. Draco with default weights

cannot distinguish by task as the weights for all soft constraints related to task are set to zero.
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dimensions (e.g., many bars or facets). We can write rules to derive whether an encoding has these

properties based on properties of the �elds (e.g., the cardinality or skew) and what visual channels

the �elds are mapped to.

For example, we can write a rule that penalizes overplotting in a scatterplot. Overplotting typically

increases with the number of marks. We can use this relationship and penalize scatterplots with

many marks :~ mark(point), not aggregate(EX,_), channel(EX,x), not aggregate(EY,_),

channel(EY,y), num_rows(R), R > 10000 [X].. Here, we use a �xed threshold, which may

be too brittle. In our current design we cannot write a single rule where the penalty increases

with the number of rows. We can, however, write multiple rules (each with their own weight) for

di�erent thresholds. The current Draco model already uses this approach for constraints on the

number of bins in a chart. Another limitation of this rule is that it only takes the cardinality into

account. Skew also increases the likelihood of overplotting. To take this into account, we could

penalize scatterplots with skewed data (along x and y) even with fewer rows :~ mark(point), not

aggregate(EX,_), channel(EX,x), not aggregate(EY,_), channel(EY,y), num_rows(R), R

> 5000, field(EX,F;EY,F), kurtosis(F,K), K >= 3..

To choose designs based on local density as suggested by Sarikaya et al. [175], we would need to

expand the data model from subsection 4.4.1 with facts over multiple �elds. For instance, to know

whether circles in a scatterplot overlap, we need to know the joint distribution of the �elds mapped

to x and y.

We can write rules similar to those for scatterplots but for other overwhelming designs such as bar

charts with hundreds of bars or designs with high cardinality �elds mapped to a nominal color

channel or facet.

The �nal critical step is to adjust the weights such that Draco favors scalable designs over percep-

tually overwhelming ones. If there are no competing rules (as is likely with only the �rst rule from

above), we can set the weights to any su�ciently large value or even make constraints hard. If
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there are competing rules, weights need to be adjusted. More work is needed to support designers

in �nding weights to trade o� among many competing rules.

4.7 Discussion and Future Work

We presented Draco, a formal model for visualization knowledge representation, and demonstrated

its use for automated visualization design. Draco models visualization design knowledge using

constraints and associated weights; this separation of knowledge representation from search

procedures enables easier development and maintenance. The Draco-APT and Draco-CQL examples

demonstrate how Draco can support increasingly sophisticated visualization design tools with

less development e�ort and better performance than prior approaches. The Draco-Learn example

demonstrates that Draco can combine data from di�erent studies to learn weights for a state-of-

the-art visualization design tool, further accelerating modeling e�orts.

We now discuss how Draco’s constraint system can enable new usage scenarios, such as design

space enumeration, visualization model comparison, and design debugging. We go on to describe

how future work might address current limitations of Draco’s implementation.

4.7.1 Draco from a Software Engineering Perspective

Draco’s use of constraint programming enables easier development and maintenance of automated

visualization design tools. Due to implementation complexity, prior approaches often have to

compromise the implementation of e�ectiveness criteria. Although Draco does not completely solve

this problem, it shifts the problem to the more tractable and well-de�ned problem of de�ning

weights to trade-o� competing preferences. We show that these weights can be e�ectively learned

from data even when the dataset is assembled from di�erent sources.

Using constraints also decouples knowledge representation from the code that applies that knowl-

edge. Although this approach aims to bene�t visualization tool developers, it may also bene�t

end-users as it makes knowledge bases easier to contribute to. Visualization researchers can
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disseminate their results as constraints to make them more easily accessible by visualization

designers; in a declarative system, designers might use more nuanced models that would otherwise

be too complex to maintain. We contend that software engineering and developer productivity

should be given more attention in the visualization community. Human designers should focus

on the design of the visualization design space and preferences rather than the design of search

algorithms that are already available in domain-independent constraint solvers.

Draco’s knowledge base can be adapted or extended to �t speci�c needs. Each component of

Draco can be easily modi�ed: the de�nition of the design space, the preferences within the

valid solution space, their weights, and how the visualization model is queried. For example, in

subsubsection 4.6.3.2, we limited the design space to scatter plots with three encodings (two

quantitative, one nominal). The same expressiveness and preference constraints could be used in a

tool that targets full Vega-Lite speci�cations or in a tool that targets only speci�c visualizations,

such as vertical bar charts. Similarly, Draco can be extended with richer descriptions of input data

(subsection 4.4.1) that can then be referenced by new soft constraints (subsubsection 4.4.2.2). A

researcher who wants to extend the Draco knowledge base with new design rules could distribute

their rules as an independent set of constraints or updates to the weights.

We hope that Draco’s current set of constraints can serve as the starting point of an evolving

knowledge base that can be extended by researchers and practitioners. For example, Draco could be

extended to include richer task taxonomies [8]. One challenge for visualization design tools is that

the “task” is typically inaccessible (e.g., within a user’s mind). Natural language interfaces may

be better suited for communicating user intent [65, 181, 195], which could then be expressed as

Draco constraints. Draco’s visualization model supports synthesis of marks, encodings, and simple

transformations (binning and aggregation). We plan to extend the model to transformations such

as �ltering and sorting, and incorporate Vega-Lite’s interaction primitives [177] (chapter 3).

We are excited to explore how our visualization model can be extended to support chart composition,

for instance into layered views or dashboards. Applying design guidelines to multiple charts
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separately can lead to locally e�ective, yet globally inconsistent views [167]. For example, di�erent

�elds might confusingly be encoded with the same color scheme across charts. With the right set

of weighted constraints, Draco could trade-o� among the e�ectiveness of single views and global

consistency within a multi-view display [167, 224].

In our demonstration of Draco-Learn, we modeled a restricted subspace of visualizations that

mirrors the limits of the available experimental data. We hope to encourage more researchers to

make data from e�ectiveness studies available, such that their results may be used by Draco or

related systems. Future work might provide tools to help researchers convert their results into

constraints or ranked pair datasets. We plan to collect more comprehensive data by systematically

generating visualization pairs and having human subjects evaluate them. In addition to independent

studies, we might leverage Draco’s design space to guide data collection in an active learning process.

With su�cient data, it may even be possible to go beyond learning weights and attempt to learn

preference rules themselves [174]. The AI community uses inductive logic programming methods

to infer logic programs from databases of positive and negative examples [168]. To learn from

noisy data (common in the visualization domain!), we could combine inductive logic programming

with statistical models such as Markov logic networks [55, 114]. For example, Law et al.’s ILASP

(Inductive Learning of Answer Set Programs) [116] is a logic-based learning system that can learn

preferences in answer set programs. To understand di�erences in preferences represented by

two or more distinct data sources, we can use multi-objective (Pareto) optimization in ASP to

enumerate designs that map the trade-o� frontier.

Because the e�ectiveness of a visualization can depend on low-level features not captured in a

high-level speci�cation (for example, over-plotting), we can imagine applying a re-ranking strategy

in which Draco enumerates a number of top-scoring candidate designs (ranked by high-level

features) that are then re-ranked by another learned classi�er operating on low-level features that

may be impractical to model directly in ASP. The sub-symbolic models learned by such classi�ers

could constitute another valuable form of visualization design knowledge to represent and share.
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4.7.2 Beyond Automated Visualization Design

Up to this point, we have positioned Draco as a tool for synthesizing optimal visualization designs

from partial speci�cations. However, Draco could be used in a variety of other contexts. In the

following, we discuss four directions that Draco could be extended.

First, Draco can be used as a general “visualization spell checker” to validate and auto-correct

designs independently, or within a broader system for people to “learn by doing”. Currently, Draco

can use expressiveness and e�ectiveness constraints to report errors for designs that violate design

guidelines. However, given a visualization, we could extend Draco to additionally automatically

correct the visualization, removing the most severe violations and suggesting alternative valid

designs to users. The problem of �nding the minimal set of constraints that need to be removed for

the remaining constraints to be satis�able is known as the unsatis�able cores problem [47]; related

techniques could be applied to visualization design constraints. Draco might also explain those

violations and why they matter, to teach students or visualization designers about best practices,

help them spot (intentionally or unintentionally) misleading visualizations, critique visualizations,

and perhaps contribute new visualization knowledge or explanations.

Second, Draco can facilitate exploration of the visualization design space. Besides surfacing

violations of design guidelines, Draco can rank visualizations by their costs. Designers might

use this function of Draco to choose among di�erent alternative designs. Draco could also be

used to cluster designs based on their violations (using the same feature vectors used in our

learning to rank approach). An exciting avenue for future research is to use Draco’s design

space de�nition to systematically generate visualizations to build a corpus of visualizations and

interactions. Creating such a corpus is as simple as running Clingo on the Draco design space

de�nition without preferences, which enumerates all valid answer sets. Testing generated designs

with human subjects will allow us to understand the costs and bene�ts of di�erent encodings and

interactions. Although the current design space in Draco is limited, as noted above we plan to

extend the model further, including interaction primitives such as Vega-Lite selections [177].
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Third, Draco can be used as a tool for researchers to compare the implications of di�erent e�ective-

ness studies. Concretely, if a researcher �nds a new design guideline, they could add it to Draco as

a constraint and assess whether it con�icts with, or is subsumed by, existing design guidelines.

Based on comparison results, researchers could share their design results as constraints to improve

the common knowledge base of visualization design tools.

Lastly, an important future extension is tooling to support developers, researchers, and designers.

In addition to collecting more data to learn preference weights, we hope to provide tools to browse

the visualization design space and knowledge base rules, as well as tools to understand violations

and �ne-tune trade-o�s among competing design guidelines. With the right tooling and �ne-tuned

visualization models, Draco’s declarative approach to automated visualization design could bring us

one step closer towards building assistive interfaces for e�ective design that canvas a much broader

swath of the visualization design space. Such interfaces should allow visualization designers to

consider a greater variety of approaches, while also focusing on the creative aspects of visualization

design.

4.7.3 Limitations of the Model

Besides the limitations of our implementation and tooling, discussed in the previous sections, some

of our design decisions make it di�cult to express some constraints you might want to express

e�ciently.

Draco models knowledge about visualization design as weighted constraints. A violated constraint

incurs a cost for each violation. To express constraints whose severity increases with some measure

(e.g., higher cost for more marks in subsection 4.6.4), we need to de�ne thresholds and write one

constraint and weight per threshold. The ASP formalism would allow for weights that are scaled

with some measure, but our learning method is not designed to learn the scales weights.

The constraint solver minimizes the weighted sum of violations. Therefore, Draco can only express

linear combinations of the constraint violations. non-linear relationships of the raw features (e.g.,
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properties of �elds, mark type) can only be expressed and learned with constrains over multiple

of these raw features. Some preferences are inexpressible with pure updates to the weights and

require new constraints. We discuss these issues in a follow-up paper [174], but more work is

needed to support people who design visualization models.
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5 Falcon: Brushing and Linking Billions
of Records

Figure 5.1: Falcon visualizing binned aggregates for 180 million �ights [205] in a web browser.

The brushes select short afternoon �ights with no more than a 10 minute arrival delay. The views

update instantly when the user draws, moves, or resizes a brush.

As the scale at which analysts need to work has outpaced the tools they use, we are challenged

to create new tools that do not overwhelm people or their computational resources. Vega-Lite

(chapter 3) and Draco (chapter 4) can help address the �rst issue. With Vega-Lite, we can describe

interactive visualizations for large and complex datasets. With Draco, we can describe design



102

guidelines for visualizations that guide analysts towards visual encodings that show important

patterns and outliers regardless of the scale of the data. The challenge for the visual analysis

system is to manage the amount of data and computation while remaining responsive.

The Vega-Lite runtime can leverage that speci�cations and execution are separate to partition

the data�ow and push expensive computations into a scalable backend system [135]. While this

approach supports static visualizations well, current data processing tools are often insu�cient for

interactive visual analysis.

To support interactive analysis at scale, this chapter contributes prefetching and indexing methods

for low-latency interaction across linked 1D and 2D views. We implemented these ideas in Falcon,

a web-based visualization system. Falcon models and optimizes a user’s session with client-side

state rather than treating every query as an independent request. In a session, Falcon leverages that

users typically only interact with a single view at a time. When the user interacts with a view, Falcon

creates an index that supports interactions with that view. Falcon can calculate the index from an

aggregate query in a database system. As the user moves the brush in the view, Falcon computes

the necessary data for all other views in constant time. When the user interacts with a di�erent

view, Falcon reindexes the data, which incurs a short delay. We accept this trade-o� since users are

more sensitive to latencies in brushing interactions than delays after switching views [122]. Falcon

further trades-o� initial accuracy of the visualizations for faster view switching. By applying these

principled trade-o�s, Falcon sustains real-time interactivity at 50fps for pixel-level brushing and

linking interactions among multiple visualizations of billion-record datasets. We show constant

brushing performance regardless of data size on datasets ranging from millions of records in the

browser to billions when connected to a backing database system.

Falcon advances the state-of-the-art in two ways. First, we exploit that not all interactions are

equally latency sensitive to develop user-centered indexing strategies for a scalable interactive

system. Second, unlike previous systems that required custom data structures, Falcon can use

existing database systems to help create its index.
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We published Falcon at CHI 2019 (co-authored with Bill Howe and Je�rey Heer) [136]. We

make Falcon available as open source software with supporting documentation and demos at

www.github.com/uwdata/falcon.

5.1 Introduction

To support e�ective exploration, interactive visualization systems must provide rapid response

times for latency-sensitive operations. Further, delays between user actions and corresponding

updates may break the perceived correspondence between action and response, reducing the user’s

engagement with the system and leading to fewer observations made [62, 122, 230]. As the scale and

heterogeneity of available data continue to increase, greater emphasis is being placed on e�cient

exploration. However, large datasets incur delays that negatively a�ect user’s exploration. Poor

support for interactive exploration can skew analyst attention toward “convenient” and familiar

datasets, causing selection biases. This work seeks to reduce the friction of using new data by

enabling cold-start analytics: exploration without time-consuming precomputation.

Traditionally, the di�erent stages of the data processing pipeline—query processing, data transfer,

and rendering—have been optimized as independent modules. For example, many e�orts to

reduce latency have centered on query processing, paying scant attention to the corresponding

interface design. Recent GPU databases [170] can achieve query times of seconds or hundreds

of milliseconds over billions of records; however, interactivity is still di�cult to achieve due to

factors outside the scope of database optimizations, including network latency and sub-optimal

client-side application design. Even short query times accumulate when a UI generates thousands

of queries. And network-induced delays remain unpredictable, especially in low-connectivity or

mobile networks.

In Falcon, we take a holistic approach to system design by optimizing the interface and query

systems together. We prioritize the allocation of compute resources to interactions for which users

https://github.com/uwdata/falcon/
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are more latency-sensitive, in particular brushing and linking. For example, in Figure 5.1 a user can

resize the brush in the arrival time view, which immediately updates all other views.

To eliminate latency for brushing interactions, we contribute prefetching and indexing techniques.

Rather than treating every query as an independent request, we model and optimize a user’s session

with client-side state. In a session, we leverage that users typically only interact with a single

view at a time—the active view. When the user moves the brush at pixel resolution, the aggregated

data for all other views—the passive views—are computed in constant time using Falcon’s indexes.

Brushing interactions are decoupled from computations over the raw data; the interactive resolution

of the brushes is decoupled from the bin resolution. As a result, both index size and interactive

latency depend only on bin size and available pixel resolution and are independent of the raw data.

Brushing in Falcon therefore meets our de�nition of perfect scalability from section 2.5.

When the active view changes, Falcon reindexes the data to support interactions with the new active

view. For datasets of up to millions of records, the client can perform the necessary aggregations.

For larger datasets, aggregation can be o�oaded to a backing database system. Switching the

active view in Falcon incurs processing delays. Such switches usually occur with a shift in a user’s

attentional focus, a less latency-sensitive action [26]. To limit view switching times, Falcon initially

lowers the resolution of the index data so brush boundaries “snap-to” units larger than individual

pixels. Analogous to progressive rendering or query processing (e.g., online aggregation [35, 93]),

this reduced interaction resolution can then progressively improve.

Brushing
Latency

View Switching
Latency

Brushing
Resolution> >

Precomputed Index Prefetching and
Progressive Interactions

} }

Figure 5.2: The Falcon system uses indexes to optimize brushing latencies and progressively

improves interactive resolution to reduce switching times.
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In summary, Falcon prioritizes brushing latency over view switching delay, and it prioritizes view

switching delay over initial interactive resolution (Figure 5.2). Our prototype implements methods

to support coordinated brushing and �ltering for cross-�lter and aggregation applications (i.e.,

ensembles of visualizations of 1D and 2D bin counts). The system avoids expensive precomputation

by prefetching only the data necessary for interactions with a single active view, enabling cold-start

analytics. In Falcon, charts update in response to brush changes at 50 fps. We demonstrate that

this performance is invariant on data sets ranging from thousands to billions of records. Because

the system progressively improves interactive resolution, we use interpolation to approximate

higher-resolution interactions.

5.2 Background and Related Work

Falcon is a dynamic query UI [183] where users interact with visual representations of the compo-

nents of a query. In particular, Falcon is a visualization system for interactive brushing and linking

across coordinated views of binned aggregates. Binned aggregates summarize data by dividing the

domain of variables into discrete units (bins), and then by aggregating the data records in each

bin [123, 218]. For example, histograms are visualizations of bin counts. Each graphical mark in a

visualization of binned aggregates summarizes a large subset of records in the original dataset.

Falcon uses binned aggregates because they convey both global patterns (e.g., densities) and local

features (e.g., outliers) and enable multiple levels of resolution via the choice of bin size. To focus

on relevant subsets of the data, analysts select ranges of data in one view using an interactive

brush, which then updates all linked views. Commercial data visual analysis systems such as

Tableau [192], PowerBI [129], and Immerse [98] use coordinated views with visual querying.

Falcon extends prior work on scalable interactive analysis systems, incorporating �ndings from

experimental studies of the e�ect of latency on exploratory visual analysis.
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5.2.1 Latency in Interactive Analysis

Informed by prior accounts of latency in psychology and HCI [9, 25, 26, 106], Liu and Heer [122]

conducted controlled experiments (later replicated by Zgraggen et al. [230]) to understand how

latency a�ects user behavior in exploratory visual analysis. Comparing di�erent operations under

two latency conditions, they found that additional delays of 500ms over the low-latency condition

(20ms for both brush and link and select, 100ms for pan, and 1s for zoom) negatively impact user

behavior. They also found that initial exposure to delays negatively a�ects subsequent performance

even when the delays were removed in later sessions.

In recent years, system designers have reduced latency by optimizing the di�erent stages of the

visualization pipeline: data management, scenegraph construction, and rendering [122]. Their

e�orts have largely addressed each stage separately. Many system designers have adopted 500ms

as a uniform latency threshold goal (e.g., [12, 44, 53, 154]); however, experimental results indicate

that some operations (e.g., zooming) are less sensitive to delays than others. Liu and Heer [122]

found that panning, brushing, and range selection are the most latency-sensitive of the studied

operations.

5.2.2 Scalable Visual Analysis Systems

Interactive analysis systems with coordinated views run in a client application. The data being

analyzed can either be loaded into this client or o�oaded to a dedicated server. Table 5.1 compares

the characteristics of di�erent visual analysis systems for coordinated brushing and linking. For a

dataset small enough to be loaded client-side, visual analytics tools support real-time interactivity

using local indexes. Square’s Cross�lter [43] uses bitmap indexes to support brushing and linking

of hundreds of thousands of records entirely in the browser. Liu et al.’s imMens [123] uses

precomputed summaries to enable real-time interactions in the browser, but their interactions are

limited to the binning resolution and a single interactive brush.
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For greater scalability, many systems adopt a client-server architecture. In this approach, all

components of the information visualization reference model [25] are not necessarily on the same

machine. Instead, the server stores the data, processes incoming queries, and sends reduced

aggregates to the client. In the client-server model, changes to the client-side UI state require a

request to the server; this incurs a delay between the user action and the corresponding update, a

delay dominated by the network round-trip and query execution times. Since network bandwidth

and latency are often beyond the control of the tool designer, optimizations aim to increase query

performance. We discuss these techniques in the next subsection.

Falcon supports both client-only and client-server setups. For data sizes up to tens of millions

of records, Falcon can load the full dataset in the browser and index it there. For larger datasets,

costly computations can be o�oaded to a scalable server-side database system.
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Feature

System
Square Cross�lter imMens Nanocubes OmniSci Immerse Falcon

Approach Client-side Index Dense Data Tiles Sparse Cube Live Queries View-Speci�c Tiles

Architecture Client Client (Server) Client-Server Client-Server Client (Server)

Demonstrated data size 105 1012 1012 1012 1012

Cold-start Yes No No Yes Yes

Interactive resolution Pixels Bins Pixels Pixels Pixels

Multiple brushes Yes No Yes No Yes

2D binning No Yes Yes Yes Yes

Zooming No Yes* Yes Yes Yes

View switching cost No No No No Yes

Table 5.1: Comparison of di�erent approaches to scalable linked views. Not shown: PowerBI [129] and Tableau Public [193] use

a similar approach to Immerse; Hashedcubes [152] builds on Nanocubes [119] and shares similar properties.

* supported for prede�ned zoom levels
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5.2.3 Scalable Data Processing for Visualization

Three main approaches can speed up query evaluation: parallel evaluation, indexing, and approxima-

tion.

5.2.3.1 Parallel evaluation.

To reduce query latency in large-scale online analytical processing (OLAP) systems [34], we can

distribute work across multiple machines. However, the additional communication overhead

typically exceeds the query times necessary for interactive data exploration.

5.2.3.2 Indexing.

Indexes and data cubes [79] signi�cantly speed up query evaluation by precomputing aggre-

gates along some dimensions. Specialized hierarchical data structures for visualization, like

Nanocubes [119], are compact indexes of spatiotemporal data that can �t in the main memory

of a single machine. The Nanocube structure leverages sparsity to more e�ciently build a spe-

cialized tree index that consists of quadtrees (for spatial dimensions) or �at trees (for categorical

attributes). The trees organize and aggregate data records for each dimension, which are then

combined into a larger index. Hashedcubes [152] further improves this design with a more compact

index. Pro�ler [110] also builds in-memory data cubes for query processing. The size of the data

cube depends on the resolution and number of dimensions, not on the data size. Thus, data cube

approaches enable scalable data processing on a single machine and support low latency responses

to aggregation queries over billions of records. However, they can impose lengthy index building

times, e.g., Nanocubes takes up to 6 hours to build an index for a dataset with 210M objects [119].

Liu et al.’s imMens [123] uses a dense data cube structure with precomputed aggregations. The

size of the full data cube is
∏

i bi, where bi is the bin count for dimension i; it is polynomial

in the bin count and exponential in the number of dimensions. To overcome the exponential

growth with more dimensions, Liu et al. decompose the full cube into a set of overlapping 3- and
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4-dimensional projections, or “data tiles.” This approach enables real-time brushing and linking

but limits interactions to a single brush. Moreover, since the resolution of the imMens data cube is

the resolution of the visible bins, brushes snap to these bins. For large datasets, the tiles must be

precomputed since they are costly to calculate.

Falcon makes a critically di�erent trade-o�: it decomposes a data cube so that it supports interac-

tions with a single active view only. The size of its full index is linear in the number of views, which

avoids a combinatorial explosion. An index is loaded when the user interacts with a particular

view. Falcon supports multiple brushes by conditioning it on the brushes in the passive views.

Further, each view can be �ltered by all brushes except the brush in the view itself instead of

only the union of all �lters. Querying and transferring the smaller index for a single view is less

costly than doing so with a full data cube (e.g., imMens) that supports interactions with all views.

The smaller index can be computed and loaded on demand. We can also increase its resolution to

support brushing at pixel resolution rather than snapping brushes to visible bins. Falcon supports

cold-start exploration of new datasets and is more �exible about zoom levels (as both imMens and

Falcon require a new index when the user zooms).

The Dice system [102] explored a similar approach but focused on exploration of the data cube

rather than interactive visualization.

5.2.3.3 Approximation.

Approximate query processing systems [35] estimate result values and their uncertainty using a

data sample. SampleAction [62], Vizdom [44], and Pangloss [134] demonstrate that progressively

re�ned approximate results are often su�cient for exploratory analysis. However, these systems do

not support interactive brushing and linking. Although the current version of Falcon does not use

progressively growing samples to approximate aggregates, we apply an analog of these techniques

in the interaction domain: we initially load an index that supports interactions at a granularity

larger than single pixels, then we progressively re�ne the granularity to one pixel.
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5.2.4 Prefetching

To mitigate query and network latency, a system can try to predict queries that the UI will likely

issue, then precompute and cache results [51]. Chan et al. [32] show this approach for time series

data. Battle et al. developed a series of systems [11, 12] that prefetch data tiles for a panning and

zooming interface. Falcon combines ideas, such as projected data cubes in imMens [123], with

prefetching methods. It prefetches an index that supports all interactions with the current view,

and is conditioned on the brushes in all other views.

5.3 The Falcon Interface Design

We now describe the Falcon interface, how users can interact with its charts, and how it prefetches

data to rapidly update charts. Here, we highlight how Falcon works. The following section provides

a more detailed discussion of its implementation.

Falcon provides a dashboard of views that visualize the number of records, grouped by zero, one,

or two binned dimensions. Figure 5.1 shows Falcon loaded with a U.S. �ight delays dataset [205].

Using application constructor parameters, developers can con�gure the dataset, con�gure the chart

layout, and customize the chart design.

5.3.1 Charts for Zero-, One-, and Two-Dimensional Data

Falcon’s views show aggregates grouped by zero, one, or two binned dimensions. We implement

all visualizations in Vega [178]. For zero-dimensional data, a view simply shows the record count.

Developers can choose among a vertical or horizontal bar chart (e.g., Figure 5.1, top left) or a text

view. Blue bars show the number of records that match all �lters, while gray bars show un�ltered

counts for comparison.

For views that are grouped by a single binned dimension, Falcon uses bar charts (e.g., Figure 5.1,

top center). Again, Falcon shows the total un�ltered counts as gray bars. Un�ltered counts provide
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Figure 5.3: The top histogram plots �ltered counts (blue bars) relative to the un�ltered data (gray

bars). A user can toggle to show the �ltered distribution only (bottom).

context and keep the domain of the Y-scale constant as a user �lters data. To see the �ltered

distribution only, users can toggle the gray bars (Figure 5.3).

For bivariate views, we must use additional visual channels, such as size (e.g., Figure 5.1, right) or

color. Size (e.g., circular area) is known to be more perceptually e�ective for numerical compari-

son [41], though it requires signi�cantly more pixels compared to color encoding. Most importantly,

by encoding counts as the size of circles, Falcon can show un�ltered counts as gray circles behind

blue circles, establishing a consistent visual language across all three chart types. Nonetheless,

developers can switch to color encoding [123, 134], but they can no longer see un�ltered counts.

Applying consistent binning schemes over 1D and 2D views ensures compatibility of linked selections

between plots. Falcon uses Vega’s [178] binning algorithm to compute bin width and o�set from

the scale range. The algorithm may extend the scale range to �nd “nice” bin thresholds (e.g., using

only multiples of 5 and 10).
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a b c

Figure 5.4: View switching in Falcon. (a) When the user initially loads Falcon, it shows un�ltered

histograms. (b) The user can draw a brush in the histogram of the arrival time (active view), and

all other passive views will be updated. (c) After a view switch the distance histogram is active,

and the user can draw a brush there.

5.3.2 Brushing in the Active View

Upon initialization, Falcon shows un�ltered counts (Figure 5.4, a). A user can then �lter the

data—for example, to show only �ights that arrive in the afternoon—by drawing a brush in any

view (Figure 5.4, b). We call the view, with which the user interacts, the active view. Falcon aims to

show the counts of the selected subset and update the data for all other views—the passive views—as

the user changes the brush. The active view does not change.

Because re-aggregating counts from the raw data for every brush movement can be too costly,

Falcon uses an index, which is a compact summary that contains the details needed to update

passive views for any possible brush in the active view. Falcon decouples rapid brush updates

(using any of the actions in Figure 5.5) from costly computations over the full dataset. To limit its

size, the index contains binned aggregates for passive views at their bin resolution and supports

brushes in the active view at pixel resolution. Falcon achieves a much smaller index than one that

supports interactions with all views [119, 123] by focusing on a single active view.
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Figure 5.5: Brush interactions in Falcon. Users can draw a new brush or move and resize an

existing one.

5.3.3 Switching Active Views

For a user to draw a brush in a di�erent view, Falcon must switch the active view, requiring it to

make a new index. For example, to change from brushing over arrival time to distance (Figure 5.4,

c), the index for the arrival view must be replaced with an index that supports brushing in the

distance view. The new index must be conditioned on any existing brushes (here, for arrival time),

which means the counts in the new index must be �ltered according to the selected ranges. The

only exception is for the arrival time view itself, since the bin counts should not be �ltered by its

own brush. This rule generalizes to any number of brushes: the index for each passive view must

always be conditioned on the brushes in all other passive views.

5.3.4 Zooming the Active View

When a user zooms in a binned chart, the visualized range changes. Since scale changes require

no new data, Falcon can immediately give visual feedback and zoom the chart. When the zoom

interaction ends, Falcon computes a new bin width and o�set. If the computed parameters di�er

from the current ones, Falcon computes updated bin counts for the active view as well as a new

index. The latter is needed to support interactions at the new resolution. Recomputing the
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index may impose delay. However, as discussed earlier, research has shown that zooming is less

latency-sensitive than brushing [122].

5.3.5 Prefetching

Instead of waiting for the �rst interaction with a new active view to create a new index, Falcon can

prefetch indexes before a user starts brushing. Figure 5.6 shows example timings for the brushing

interactions shown in Figure 5.4. After modifying the arrival time brush, an analyst might move

the cursor to hover over the distance view when preparing to draw a new brush. In this case, Falcon

would not yet perform a view switch (i.e., change the index), but it would prefetch the index. When

the analyst starts brushing (around second 20), Falcon switches to the prefetched index. Hovering

over a chart is only one signal that we could use to predict what chart the user will interact with

next. Techniques from previous work on prefetching [11] could also be used, but we found that

mouse hover is a strong indicator of user attention [37]. In addition to prefetching on mouse hover,

Falcon can use long idle times between interactions to precompute additional indexes.

5.4 Falcon System Implementation

We now discuss how Falcon implements the interactions just described in section 5.3.

5.4.1 An Index of Data Tiles

A Falcon index contains data needed to render passive views for every possible brush in the active

view. The data for binned aggregate views with zero, one, or two grouping dimensions can be

stored in a zero-, one-, or two-dimensional array; this projection of the data cube [79] is called a

cube slice. For example, the histogram in Figure 5.5 needs an array with 24 entries for the �ights

for each hour of the day.

The user can draw brushes in one-dimensional histograms or two-dimensional visualization of bin

counts. For a 1D histogram, there are in theory an in�nite number of possible brush con�gurations.
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Figure 5.6: Visualization of the timing for the brushing interactions in Figure 5.4. The user �rst

draws and then moves a brush in the arrival time histogram before drawing and resizing a brush

in the distance view. Finally, the user deletes the arrival time brush. Between interactions, the app

is idle waiting for user inputs.

However, in a pixel display a histogram that is p pixels wide has only p2 distinct brushes, with a

brush start and end at two pixel locations. Storing p2 cube slices for each passive view remains

prohibitively large. Falcon therefore encodes these p2 slices as p cumulative slices and stores these

cumulative counts in a single multidimensional array, which (following imMens) we call a data tile.

Figure 5.7 shows a data tile with airtime as the active view and arrival delay as the passive view.

Since each column stores the sum of all counts from the start, a speci�c cube slice is the di�erence

between the cumulative slices for the start and end of the brush. For a �xed number of bins, this

di�erence is computed in constant time (O (1)).

Computing a sum (e.g., of counts) as the di�erence of cumulative sums is often used in computer

graphics and is known as summed area tables [45] or integral images. Summed area tables generalize

to many dimensions; in Falcon, we use the same approach for brushing in 2D views. Here, a cube
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Figure 5.7: A visualization of a data tile with departure time as the active view and distance as the

passive view. A lighter color indicates larger cumulative counts. A histogram for the passive view

conditioned on a brush can be computed as the di�erence between the cumulative bin counts at

the end of the brush and the start of the brush.

slice for a passive view is computed from the four corners of the brush in the active view. A data

tile stores the cumulative sums along the dimensions of the active view.

In addition to a data tile for each passive view, the index must also store the cube slice for the case

where there is no brush. This is necessary because a brush that spans the full extent of the active

view does not contain all records in the raw data when a user has zoomed in on a view.

In the general case, a data tile is an array whose dimensionality is the sum of the dimensionalities

of its corresponding active and passive views. In Figure 5.7, the active and passive dimensions are

each grouped by a single dimension, so the data tile has two dimensions. This concept generalizes:

to support brushing in a 2D active view and �lter a 2D passive view, we need a four-dimensional

array.

The size of a data tile is the product of the bin counts for each dimension of both the active and

passive views. The number of data tile bins corresponding to the active view depends on the active
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view’s pixel screen size. The ratio of active view pixels to corresponding data tile bins determines

the interactive resolution, which is at most 1 pixel per bin.

5.4.2 Computing Data Tiles

We implemented two query systems to compute data tiles for Falcon. The �rst is a query engine

that runs in the user’s browser alongside the Falcon UI. This engine supports queries over tens of

millions of records (as Apache Arrow �les [63]), above which latency becomes unacceptably large.

The second system generates SQL queries for a database server. The scalability of this approach

depends on the database system.

Both engines use a similar approach to compute data tiles. For each passive view, they aggregate

the records that are not �ltered out by any brush in other passive views. From these counts, the

engines build the cumulative data tile.

5.4.2.1 In-Browser Engine

The engine in the browser computes a data tile by �rst creating an empty multidimensional array of

the binned dimensions. In a single pass over the �ltered data, it then counts how many records fall

into each cell of the array. In a �nal step, it computes the cumulative sums along the dimensions of

the active view. While the engine iterates over the records, it counts how many records match the

�lters in the other passive views but fall outside the extent of the active view; it uses these values

to determine un�ltered counts. Since the size of the data tile is independent of the size of the data,

the running time of the last step is bounded only by the number of bins in the dimensions of the

active and passive views. We implemented the engine in JavaScript; thus, it is single-threaded and

blocking.

5.4.2.2 Engine for Database Server

The database engine issues queries that perform binning and aggregation in a scalable database

system, such as OmniSciDB [170] (OmniSci was formerly known as MapD). Falcon generates
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SELECT
CASE

WHEN airtime BETWEEN 0 AND 500
THEN floor((airtime - 0) / 1)
ELSE -1 END AS binned_airtime

, count(*) AS cnt
, floor((arrdelay - -20) / 5) AS binned_delay

FROM flights
WHERE arrdelay BETWEEN -20 AND 60
GROUP BY binned_airtime, binned_delay

Figure 5.8: The SQL query to compute the counts for Figure 5.7 and a special bin (-1) for the

un�ltered counts. The cumulative counts are computed on the aggregated data.

aggregate queries that �lter by the brushes in the other passive views and group by the bins in the

dimensions of the active and passive views (Figure 5.8). The same query counts the records that

fall outside the extent of the active view. Because the queries for each passive view use di�erent

�lters and group-by clauses, they cannot be naturally expressed as a single query. Query results are

received client-side and written into a multidimensional array. Falcon computes the cumulative

counts in the client, since some databases (including OmniSciDB) do not support window aggregates,

which are necessary to compute cumulative counts e�ciently. Queries execute asynchronously

without blocking the UI.

5.4.3 Progressive Interaction

Switching the active dimension and zooming are not as latency-sensitive as brushing. Nonetheless,

delays may be frustrating to users. To address this issue, we propose progressive interaction, an

analog of progressive re�nement of approximate aggregate queries [93] or progressive loading

of images [19] and data [76], but in the interaction space. It works as follows: initially, Falcon

loads small data tiles, where the bin count of the dimensions of the active view is lower than the

pixel count. The user can interact with the active view, but the brush will snap to the closest

available data tile bin boundaries. Falcon then loads data tiles for interactions at the pixel resolution

in the background. Our current prototype implements progressive interactions in two steps: (1)
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Falcon loads data at the resolution of the visible histogram bins, and (2) Falcon loads the full pixel

resolution.

5.4.4 Interpolation

When brushes snap to the closest bins, users cannot set brushes at the pixel resolution. Continuous

brushes have two advantages. First, users can set brushes between bin boundaries. Second,

histograms in the passive views change smoothly as users brush. When Falcon starts with low-

resolution data in progressive interaction, it approximates brushing at pixel resolution using

interpolation. We interpolate between bin counts for the passive view at the bin boundaries closest

to the current brush ends. Though interpolation errors are usually small and resolved as soon as

high-resolution data arrives, interpolation remains an approximation with unknown error bounds.

To make users aware of this, we decrease the opacity of passive views while users interact with an

active view with low-resolution data tiles. Interpolated bin counts for smooth brushing at pixel

resolution let users place brushes at a precise location; this helps users place multiple brushes

without waiting for a full resolution version to load. Falcon uses linear interpolation for 1D brushes

and bilinear interpolation for 2D brushes.

5.5 Benchmark Evaluations

We now present a benchmark evaluation of Falcon’s brushing performance and the cost of indexing

datasets of di�erent sizes. Falcon reduces latency by progressively computing indexes with

increasing resolution. We measure the time to compute an initial low-resolution index and

the errors of interpolating pixel-level interactions from this data. We then discuss our results and

their implications.
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Figure 5.9: Latency between brush interactions with one chart and updates to 5 passive views,

averaged across 5 trials. We compare Falcon to Square’s Cross�lter with 3 million records. Falcon’s

performance is constant, close to the browser’s maximum frame rate of 60fps regardless of the full

dataset size. Cross�lter reacts slowly when many records are added to or removed from the brush.

5.5.1 Brushing Performance

Figure 5.9 compares Falcon’s brushing performance to Square’s Cross�lter. For this benchmark, we

programmatically update the brush by iteratively changing its start and end. We run experiments

on a 13" 2014 MacBook Pro using the Chrome 70 browser, with Falcon performing all indexing on

the client. Using a chart con�guration of 6 histograms for �ight delays [205], Falcon consistently

updates the 5 passive views at more than 50 frames per second. Due to its incremental processing

of original data records, Cross�lter’s query update times spike when the brush moves over parts of

the view where many records are either added to or removed from the �lter. In addition, Cross�lter

needs ~10s to parse the CSV �le and ~30s to initialize internal data structures for 3M records.

Falcon works on binary data [63]—there is no parsing or initialization cost—and for up to 10M

records requires less than one second to switch views.
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5.5.2 View Indexing Cost

Before a user switches views, Falcon prefetches data tiles for all passive views. Table 5.2 shows

the mean, median, and 95th percentile of the time it takes to prefetch data for all passive views

for di�erent con�gurations and data sizes. We measure indexing times for high resolution (500

pixels for 1D and 200 × 200 pixels for 2D) and bin resolution (25 and 25 × 25 bins). We use three
datasets: �ights, weather, and GAIA (Figure 5.11). The �ights dataset [205] contains information

about �ight time, length, distance, and delays for all 180M commercial �ights in the U.S. since

1987. The weather dataset [143] contains NOAA weather statistics for di�erent locations in the U.S.

GAIA [22] is a sky survey from the European Space Agency with records for more than a billion

celestial objects.

We �nd that indexing time unsurprisingly increases with data size. In the browser, view switching

times stay below 5s even for datasets with 10 million records. Computing a low-resolution index

does not reduce indexing time in the browser but can reduce average time by up to 6× with a
backing database server (here, OmniSciDB). The time to load the �rst data tile in an index from

OmniSciDB is up to 24× faster than the time to �nish loading all data tiles in an index.
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Dataset Engine Size Views Indexing at Pixel Resolution Indexing at Bin Resolution

Mean Median P95 Mean Median P95

Weather Browser 1M 1×0D, 6×1D 0.34 0.33 0.38 0.33 0.33 0.38

Weather Browser 3M 1×0D, 6×1D 1.0 1.0 1.1 1.0 1.0 1.1

Weather Browser 10M 1×0D, 6×1D 1.2 1.2 1.3 1.2 1.2 1.2

Flights Browser 1M 1×0D, 4×1D, 1×2D 0.29 0.31 0.52 0.30 0.28 0.38

Flights Browser 3M 1×0D, 4×1D, 1×2D 0.92 0.88 1.2 0.95 0.90 1.1

Flights Browser 10M 1×0D, 4×1D, 1×2D 3.0 2.8 3.9 2.8 2.6 3.4

Flights OmniSciDB 7M 1×0D, 4×1D, 1×2D 0.15 0.15 0.13 0.11 0.30 0.13 0.13 0.11 0.13 0.11 0.15 0.13

Flights OmniSciDB 180M 1×0D, 4×1D, 1×2D 2.1 0.34 1.7 0.33 3.9 0.47 1.2 0.36 1.3 0.34 1.5 0.46

GAIA OmniSciDB 1.2B 1×0D, 3×1D, 2×2D 33.8 1.4 6.5 1.3 94 2.6 5.8 1.0 5.3 0.93 9.5 1.5

Table 5.2: Mean, median, and 95th percentile time in seconds to compute data tiles for all views for di�erent dataset sizes

across 5 runs and for pixel resolutions (500 for 1D and 200 × 200 for 2D) and bin resolutions (25 and 25 × 25 bins). Times for
OmniSciDB include network roundtrip on a university network when accessing a cloud-based instance. Gray colors show the

time until the data tile for the �rst view is computed (applies only to non-blocking requests).
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Figure 5.10: Wasserstein distance between the true and interpolated bin counts for various brushes

in the �ight dataset. Most instances have small distances. Some instances with high selectivity

(few tuples remain) have distances over 0.04.

5.5.3 Approximation Error of Interpolated Brushes

To support brushing at pixel resolution even with low-resolution data tiles, users can enable

interpolation. In this experiment, we measure interpolation error using the Wasserstein metric

(i.e., earth mover’s distance) between interpolated and true bin counts. The metric is 1 when the

complete mass of a distribution must be moved from one end to the other. We compare interpolated

bin counts (from data tiles with 25 bins in the active dimension) in the �ight dataset to true bin

counts for various systematically enumerated brushes. As Figure 5.10 shows, most of the cases

show small errors (<< 0.01). The error is largest (> 0.04) for highly selective �lters (< 0.2%) since

bin counts with few records are more susceptible to noise, and the Wasserstein metric compares

two distributions.

5.5.4 Discussion

Our benchmarks show that Falcon delivers constant brushing performance regardless of how many

records match the �lter de�ned by a brush. Its update rates are comparable to those of imMens
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and outperform those for Square’s Cross�lter. Unlike imMens, Falcon supports higher interactive

resolutions and multiple brushes. This demonstrates that even though our prefetching methods

were designed for client-server applications with massive datasets, precomputing a �xed-size

index also bene�ts client-only applications.

In addition to low latency, constant and predictable performance are important. When a system

behaves inconsistently, users may adapt by only performing those interactions that are fast [122].

For the Square Cross�lter application, users might begin to explore only histograms showing

few changes. Falcon decouples brushing actions from the full dataset, and all computations have

constant complexity with respect to data and brush sizes. Future systems might consider not just

the average or worst performance but also the degree to which performance varies for di�erent

interactions.

5.5.4.1 In-Browser Engine Performance.

Indexing times for small datasets (≤ 1M records) in Table 5.2 are at most a few hundred milliseconds,
about the time needed to hover over a view and begin to brush, so users may not even notice a delay.

For datasets up to 10M records, indexing times in our browser engine are at most a few seconds,

as shown in Table 5.2. After these few seconds, users can brush without delays, a trade-o� not

available in previous systems [98, 119, 123].

Since computing a low-resolution index in the browser is not signi�cantly faster than computing a

high-resolution one, we do not use progressive interaction here. Although a high-resolution index

has more bins, the vast majority of time is spent iterating over the full dataset. The index has the

same size regardless of the full dataset’s size.

5.5.4.2 Database Engine Performance.

For datasets that are too large to be loaded and processed in the browser, Falcon can issue queries

to a database system. Our prototype uses OmniSciDB, one of the fastest analytics database systems

available [120]. Our benchmark evaluation shows that the time to compute an index for the dataset
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of all commercial �ights in the U.S. (180M records) never exceeds a few seconds. However, for the

GAIA dataset, computing a high-resolution index can take more than a minute.

A signi�cant amount of time is spent receiving and deserializing database query results. Some of

this overhead results from limitations in the OmniSci API. For instance, aggregated counts must be

sent as a relational table instead of as a dense multidimensional array. Nevertheless, while the

index is loading, users can already be drawing a brush in the active view.

To further improve the user experience, Falcon leverages two observations from the benchmark.

First, loading the initial data tiles takes about a second. Thus, Falcon’s UI can update individual

passive views as soon as their data tiles have been loaded and provide visual feedback. Second,

low-resolution indexes load much faster using the database-backed engine. Our progressive

interaction method leverages these faster query times to update passive views faster—improving

average initial load times by 5×, from ~30s to ~6s—and then progressively improves them as

high-resolution indexes are loaded. Our experience shows that view switching times are reasonable,

but more careful assessment of how these delays a�ect people’s behavior remains as future work.

Falcon’s interpolation of high-resolution interactions from low-resolution data tiles enables

progressive interactions without snapping brushes to the low resolution. Our measurements in

Figure 5.10 show that the interpolation error is negligible in most cases. The largest errors occur

when brush �lters are highly selective. Since Falcon visualized bin counts by default on the scale

of un�ltered data (Figure 5.3), the �ltered bin counts and any visual di�erences in the chart are

small. Moreover, when �lters are highly selective and visualizations of aggregates are based on

few records, the visual gestalt of the chart is susceptible to noise in the data. In general, analysts

should make judgments about distributions based only on large samples.
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5.6 Limitations and Future Work

Falcon’s index is signi�cantly smaller than that in previous approaches (e.g., [123]), allowing it

to be computed on the �y from a single scan by the backing database under appropriate latency

assumptions. To support datasets that are too large to be scanned within a given latency threshold,

Falcon uses existing databases to compute the necessary aggregates; it can take advantage of

approximation and sampling techniques from the database literature. However, our prototype does

not yet apply these approximation techniques.

For binned aggregate plots, the data necessary to render visualizations depends only on pixel reso-

lution and not data size. This common assumption enables visualizations whose visual complexity

is invariant to the size of the full dataset. Thus, Falcon does not support non-aggregated views

where each record is rendered as a separate mark. Future work might involve separate marks for

outliers. Our prototype system implements aggregate visualizations of the counts with zero-, one-,

and two-dimensional grouping by bins. We have not yet implemented grouping by categorical

dimensions, but we plan to add them.

Falcon assumes that a user interacts with a single view at a time. On a desktop computer with

a mouse, this assumption is trivially met. However, on touch-enabled devices, a user could use

both hands to modify multiple brushes simultaneously. We believe that this scenario is rare. We

conducted informal user observations with an iPad, and none of the participants attempted to use

simultaneous brushes. Nonetheless, a future version of Falcon could support simultaneous brushes

by combining the dimensions of multiple active views, though at the cost of much larger data tiles.

While Falcon prioritizes brushing and linking as the most latency-sensitive interactions [122],

future systems should use techniques presented here to prioritize zooming or other interactions.

By prefetching data at di�erent zoom levels, a system could support continuous zooming and

re-binning. Battle et al. [12] demonstrate prefetching techniques for panning interactions and

show that prediction models can help prioritize which data to prefetch. This was not necessary in
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Falcon since the computation of data for one brush or for all brushes both require one pass over the

data. However, future systems could use prediction models and prefetch in multiple interaction

vectors: e.g., linked brushing, linked selection, zooming, and panning.

The Falcon system does not take advantage of concurrent queries: the in-browser engine is written

in JavaScript and thus single threaded, while OmniSciDB executes queries sequentially. Future

system iterations could speculatively precompute indexes for interactions with a non-active view.

The cost of such aggressive prefetching could be o�set by caching results in a middleware layer,

possibly even for other users. The middleware could also leverage structure in the data tiles

to compress them. Neighboring cells in a data tile often have similar values (see Figure 5.7,

subsection 5.5.3), which is similar to images or videos. The large body of work on perception-aware

image and video compression could be applied to compressing data tiles between the server and

client. Compression could signi�cantly reduce the time needed to transfer a Falcon index from

server to client.

To support constant latency for brushing interactions, we limit Falcon to summable aggregate

functions (e.g., sum and count). Our prototype only implements count. Some aggregate functions

are algebraic, meaning they can be constructed as a combination of summable functions; this

includes the mean (sum, count) and variance (sum, count, sum of squares). Distributive functions

(e.g., min and max) can be computed by iterating over matching bins, which results in a linear (or,

with extra data structures, logarithmic) lookup time with respect to brush size. Future iterations

of Falcon could implement these aggregate functions.

5.7 Conclusion

In this chapter, we contribute the idea of prioritizing brushing latency over view switching latency,

as suggested by prior work on the impact of latency on analysts’ behavior. We also show that

it is possible to lower the initial resolution of interactions to improve view switching times. We

implement these methods in Falcon, our prototype system. Falcon supports brushing and linking
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Figure 5.11: The GAIA [22] dataset loaded into Falcon. The GAIA spacecraft measures the positions

and distances of about 1.7 billion objects, consisting of stars, planets, comets, asteroids, and

quasars.
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across views over datasets of tens of millions of records in the browser and billions of records when

connected to a backing database system (Figure 5.11), without the need for costly precomputations

or signi�cant limitations to supported interactions.
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6 Optimistic Visualizations of
Approximate Queries

Prefetching and indexing techniques, like the ones implemented in Falcon (chapter 5), work best

when queries take a few seconds. However, for petabyte-scale datasets, even scanning a large

dataset may take minutes and inhibit interactive exploration. In this situation, users are given a

choice: they can wait for the system to complete long-running queries or rely on an approximation

based on a sample of the data. While attractive, approximate values can be—by their nature—

incorrect. In exploratory visualization, an analyst might see dozens of visualizations; they are

almost guaranteed to encounter a visualization where the errors are outside the predicted bounds.

In this chapter, we propose to address this issue with optimistic visualization. In an optimistic

visualization system, an analyst begins by constructing a fast, approximate query. Computation

of the precise results is placed in the background, allowing analysts to continue their exploration

without watching for updates. When the query is complete, the system invites the analyst to verify

their observations. Pangloss implements these ideas. We discuss design issues raised by optimistic

visualization systems. A laboratory study and three case studies at Microsoft show that this method

can meet analysts’ needs for both speed and precise results. Optimistic visualization gives people

con�dence in working with approximate results and paves the way towards broader adoption of

approximate methods in exploratory analysts.
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We published optimistic visualization and Pangloss at ACM CHI 2017 (co-authored with Danyel

Fisher, Bolin Ding, and Chi Wang) [134]. We discuss design implications for data management

systems in our HILDA 2017 paper (co-authored with Danyel Fisher) [133].

6.1 Introduction

Data analysts want to be able to derive insights from increasingly large datasets. Exploratory

visualization, however, runs into an obstacle where the scale of the data is su�ciently large that a

screen cannot render each point, and where database queries would take a long time to return. By

sampling the dataset, though, we can create a visualization with approximate values in interactive

time. This is known as Approximate Query Processing (AQP).

There are several well-known challenges with approximations. The most critical of these is trust:

approximate values can be, by their nature, possibly incorrect. In an exploratory visualization, an

analyst might see dozens of visualizations that are accurate 95% of the time. Can an analyst trust

an approximation with a business-critical decision?

In this chapter, rather than addressing the problems with AQP from an algorithmic or systems

perspective, we formulate them as user experience problems. What user experience would enable

analysts to gain the bene�ts of approximate queries, while still being able to trust the results?

We propose an approach which we call optimistic visualization. Optimistic visualization produces

approximate results quickly, and computes precise results in the background. The analyst can

make observations on the approximation, and later check them against the precise results.

We call this approach “optimistic” because the analyst expects the approximation to be very

close to the precise value; in those rare cases when there is a signi�cant di�erence between the

approximate and precise results, the analyst can decide which parts of the exploration have to be

redone. Optimism provides a way to detect and recover from errors, and so increases con�dence in
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working with samples. The technique can be combined with other approximation techniques such

as con�dence intervals and online aggregation.

We present Pangloss, an optimistic visualization tool based on AQP. With it, analysts can rapidly

explore very large multidimensional datasets by grouping, aggregating, and �ltering. Working

in a sample-based system a�ects the user experience of visual data exploration. We describe the

design decisions that went into the system. We validated our decisions by running a user study

with �ve participants exploring a 170 million row dataset about �ight delays; we then deployed our

prototype system to three data scientists using their own data.

6.2 Background and Related Work

The concept of optimistic visualization builds on past research on data exploration, AQP, and

uncertainty visualization. We �rst discuss the importance of rapid iteration in exploratory data

analysis, and then the ways in which it changes when working with very large datasets. Last, we

focus speci�cally on sample-based queries and visualization.

6.2.1 Exploratory Visualization

Exploratory data analysis (EDA), a term coined by Tukey [208], is broadly understood as a process

of examining multi-dimensional data by looking at the distributions and correlations of �elds. As

Card et al. [27] note, this process prizes iteration and speed of exploration; an analyst might look

at dozens or hundreds of graphs as they get to know the data.

The process of moving through these dimensions is iterative. An analyst begins with a broad

question, and creates views that address some part of it. This view can inform a more-speci�c

question, leading them to create another view to address that question [160, 196, 224]. These

increasingly-speci�c questions require analysts to change representations, to �lter the data by

zooming or �ltering views, and to choose new �elds to explore. Some of these views will contain

interesting insights; others will be dead ends with less value. When the analyst has su�ciently
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addressed the broad question and follow-up questions, they often continue with a new broad

question and chains of speci�c follow-up questions.

Visualization tools—whether point-and-click, such as Tableau (an extension of Polaris [198]) and

PowerBI, or programming, like Matplotlib—support this process with tools that allow users to

rapidly specify and re�ne their visualizations.

Each step in this process involves generating observations of the data. Optimistic visualization helps

analysts con�rm (or challenge) their observations. An observation is a single fact about the data; it

is the unit of knowledge that allows an analyst to move on to the next step of their analysis [229].

For example, when examining a dataset of �ight data, an observation might be “Delta is the airline

with the most �ights in the dataset.” It is a more modest unit than the insights that the research

community has focused on as the outcome of the analysis process. An insight can bring in external

context and the results of some queries; an example might be “the biggest airlines have trouble

with congestion near the holidays, while smaller airlines do not” [145, 229].

The visualization system must be fast enough to enable iteration. Liu and Heer show that analysts

lose e�ectiveness when a result takes more than 500ms to return [122]; Nielsen argues that when

a computer operation takes more than a second, users lose their �ow of thought [142].

6.2.2 Big Data Visualization

These requirements for responsiveness become urgent when dealing with large datasets. As

Fisher [60] and Godfrey et al. [77] outline, when dataset sizes exceed even a few million records,

analysts run into two fundamental issues: visual scalability and data processing scalability.

It is impractical to display every element of a large dataset: the number of records may far exceed

the available pixels. For example, drawing raw data in a scatterplot without aggregation leads to

overplotting—drawing many points in the same place—and visual clutter. The data can be grouped

by a dimension, however, and a single aggregate measure computed for each group. The simplest
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such aggregate visualization is a bar chart, in which each bar represents the aggregated value of a

group. Elmqvist [54] outlines visualizations that work with aggregate data; Wickham proposes the

bin-summarize-smooth framework [218] as a general strategy for visualizing big data.

Data retrieval and processing are the other major bottleneck. Handling very large datasets can be

comparatively slow. Analysts sometimes resort to an o�ine process: formulating and submitting a

query, waiting for a result, and then formulating a follow-up question. This is not only frustrating

but requires analysts to carefully design their queries to be worth the wait and the resources.

There are three major technologies to achieve more-responsive queries. Data cubes precompute and

store partially-aggregated results; at query time, the system can assemble these partial answers

quickly [79, 119, 123]. Unfortunately, these cubes require a designer to select the �elds to optimize.

Second, the query can be spread across many computers, which assemble an answer [24, 157]. In

these distributed Online Analytical Processing (OLAP) systems [34], though, network latencies can

last into the seconds. The third major approach is to sample the dataset.

6.2.3 Approximate Query Processing

Optimistic visualization is based on the technique of Approximate Query Processing (AQP). In AQP,

the tool uses a representative subset, or sample, of the data; the goal is to look at less data more

quickly. Tools can estimate the true value of an aggregation function based on that sample. As a

simple example, we can approximate the sum of a set of values by computing the sum of 10% of

the values and then estimating the true sum to be ten times the aggregate value of the sample.

This value is an estimate, and carries some uncertainty, which can be expressed as error bounds.

Those bounds widen with the variance of the data, and narrow with the square root of the size of

the sample.

Some tools create a sample of the data before the user begins their analysis. In these systems, the

precision of the approximation greatly diminishes as the analyst �lters away more records. For

example, every record in a census can help the approximation for “average age”, but far fewer will
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be helpful for “average age of unemployed men living in Aspen, Colorado”. Choosing a sample that

is large enough to lead to statistically meaningful results while maintaining interactive response

times is important.

Sampling can be integrated directly into databases [147]; other systems build on di�erent sampling

and estimation methods [3, 50, 108]. These systems pick a sample and compute a result along with

estimated error bounds; the analyst may choose either a maximum amount of time that the query

runs, or desired error bounds. Interactive systems tend to use time bounds to get a best-e�ort

approximation within that time bound.

6.2.4 Progressive Visualization with Online Aggregation

Rather than forcing the user to settle for a �xed-size sample, or wait for the system to reach a

�xed level of precision, Online Aggregation (OLA) picks ever-growing samples and displays results

to the user; when the analyst determines the visualization has tight-enough bounds, they can end

the process. OLA computes aggregations and con�dence intervals and returns them to the user.

Hellerstein et al. [93] �rst suggested the idea; it has been adopted by the visualization community

as a “progressive analytics” approach [57, 62, 158, 197, 210].

Optimistic visualization can be seen as an asynchronous form of progressive sampling; it places the

updates in the background, allowing the analyst to continue their analysis without watching for

updates. The CONTROL project [92] noted that progressiveness adds costs; e.g., “ripple joins” [82]

require multiple passes over the data, and so may take longer to reach a precise result. Pangloss

can use existing, highly-optimized database systems for the precise results.

6.2.5 Visualizing Approximations

There are many techniques for communicating approximate query results [149]. Commonly used

methods are con�dence intervals [141], visualizing distributions [220], or visualizing possible
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instances of the underlying statistical model [97]. Researchers are less certain of ways to visualize

uncertainty on some visualization types such as heatmaps.

Even with the help of visualization, users struggle to correctly interpret uncertainty and can draw

incorrect conclusions [46, 105]. In a visual data exploration where an analyst creates tens or

hundreds of visualizations, the “rare” cases when the true values are outside the estimated bounds

become likely. Worse, many con�dence estimates are inaccurate: Agarwal et al. examined logs of

70,000 approximate queries from Facebook and found a large fraction had error estimates that

were too wide or too narrow [2].

Optimistic visualization ensures that precise results will eventually be available so that the analyst

can discover places where estimates were unavailable, hard to understand, or far from the true

value.

6.3 Optimistic Data Visualization

We address the challenges of sample-based visualization with optimistic visualization. In an op-

timistic visualization system, an analyst begins by constructing a fast, approximate query and

seeing results instantly. The analyst may choose to remember that query, in which case it will run

in the background. While the query is running, the analyst continues their exploration. The system

allows the analyst to know when the query is complete; at which point the analyst can verify their

observations. The system shows the error between the approximate and precise views.

In most cases, the �nal result validates their earlier work. Should a past approximation turn out to

be inaccurate, however, the analyst must then re-evaluate how much exploration must be redone.

There are many edge cases for approximation: it is di�cult to choose good con�dence intervals

on some functions, such as percentile measures; some datasets have high enough variances that

con�dence intervals are extremely wide; and some approximations turn out to be incorrect.
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Even in these riskier scenarios, optimistic visualization allows the analyst to feel certain that

their �nal results will con�rm whether their assumptions were justi�ed. Without optimism the

analyst can only rely on the uncertainty—the estimated error of the approximation—to make a

decision. The uncertainty should be a good predictor of the approximation error; the true error of the

approximation. However, only the precise results can con�rm this; analysts have to know when

the approximation error was signi�cantly larger than the uncertainty.

In progressive visualization systems [62, 158, 210] analysts watch progressive updates as more

data arrives. During the waiting period, though, values continuously change [58]. Analysts can be

distracted by these dancing bars; they can also incorrectly assess trends as the con�dence intervals

converge. Progressive systems require accurate communication of uncertainties so analysts can

decide when to stop. However, some forms of uncertainty are di�cult to visualize, and true errors

can be outside the estimated bounds. Optimistic visualization defers the con�rmation and moves

the computation of the precise result into the background; analyst can continue their exploration

sooner.

An optimistic visualization is most e�ective when the complete query takes long enough to get in

the way of interactivity, but shorter than an analysis session—it is highly e�ective when a query

takes several minutes to return.

6.4 The Pangloss System

We implemented optimistic visualization in the Pangloss system. Pangloss is a web-based UI that

queries Sample+Seek [50], an AQP system. Because Sample+Seek has some unique features, we

discuss it in some detail before presenting our interface.

6.4.1 Sample+Seek for Approximate Query Processing

Sample+Seek [50] is designed to be highly responsive for aggregate queries on a single table. It

incrementally loads more records into the sample until either the uncertainty bound is lower than
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a prede�ned threshold or until a timeout. Instead of uniformly sampling records—as many other

AQP systems do—Sample+Seek uses measure-biased sampling, a method that biases sampling

according to the aggregation measure. Measure-biased sampling has a tremendous advantage

over uniform sampling: fewer samples are necessary for the same accuracy in a visualization.

This sampling method has been developed to optimize the distribution uncertainty. It is a metric of

uncertainty across all groups in the result, and is de�ned as the expected distance (e.g., sum of

distances, Euclidean, etc.) between the normalized distributions of the approximate answer and

the precise one. For example, the Euclidean distance between the normalized distribution answer

x = 〈0.39,0.61〉 and the approximation x̂ = 〈0.40,0.60〉 is ||x− x̂||2 =
p

0.012 +0.012 = 0.014.

More general, the distribution uncertainty with Euclidean distance is [50]:√√√√ ∑
group i

(
group i’s value
total group value

− estimated group i’s value
total estimated group value

)2

Distribution uncertainty is di�erent from familiar per-group con�dence intervals [62, 92, 97].

Rather than seeing each group as having its own con�dence interval, the distribution uncertainty is

a total amount by which the whole visualization is likely to be imprecise. Distribution uncertainty

recognizes that uncertainties are not independent. As Figure 6.1 illustrates, one group might be o�

by a lot, or many groups might be o� by just a little.

Besides the distribution uncertainty, we also compute a con�dence interval for each group. However,

the sum of these per-group uncertainties are worst-case estimates, and can be signi�cantly higher

than the overall distribution uncertainty. When we visualize con�dence intervals, the possible

range of uncertainty they imply is far greater than the distribution uncertainty (Figure 6.1). For

the analyst, knowing the overall distribution uncertainty means that they do not have to expect

the worst case for all groups.

Sample+Seek supports aggregate measures such as count, sum, and average. Queries can have

multiple group-by dimensions, of either categorical values or binned numerical values. Queries can

also �lter the data, based on Boolean predicates. When predicates are selective, AQP systems need
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Distribution Uncertainty: 4

Figure 6.1: The uncertainty implied by the con�dence intervals from (A) is larger than the dis-

tribution uncertainty of 4 (here for illustration de�ned as the sum of absolute, unnormalized

di�erences). (B) are possible instances that stay within both the con�dence intervals and the

distribution uncertainty. The values for all groups in (C) are within the con�dence intervals but

the distribution is o� by 6. The sum of the values is always 12.

to look at many records before they �nd records that match the �lters. Sample+Seek maintains

indices that help rapidly identify matching records. Each query uses a di�erent sample because we

limit the time per query.

In the algorithm a sample is always a strict subset of all rows. Even if we scan all rows, we can

only get within a �xed factor of the precise answer. This prevents us from providing users with

progressively improving results.

In the original Sample+Seek [50], data samples were kept in memory; Pangloss uses a modi�ed

version that supports larger datasets and reduces the memory footprint by keeping the dataset

as a randomly shu�ed �le on disk. Our version of Sample+Seek can respond within 100ms with

acceptable levels of approximation error.
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6.4.2 Designing the Pangloss UI

Sample-based visualizations require a di�erent user experience than more traditional visualization

systems. In this section, we discuss the Pangloss user interface, highlighting design decisions that

accommodate the unusual aspects of AQP and optimistic visualization. The interface is implemented

as a web application, using the React framework and D3 [18].

The interface, shown in Figure 6.2, uses interaction paradigms well-known in visualization tools

such as Tableau and PowerBI. On the left is a searchable schema (A) with �elds that can be dropped

to the chart speci�cation (B). Below the chart speci�cation form are �elds for �ltering (C) and

showing the current zoom predicates (D). The largest area of the screen is taken up by the view (E)

and its uncertainty (F). Above the view is a textbox for observations and a button to remember the

current view (G), which computes the precise result for this view. Remembered views are listed in

the history on the right; they are drawn as orange while they are still loading, and turn blue when

precise result is available (H).

6.4.2.1 Approximate Visualizations

Pangloss supports two core visualization types: bar charts and heatmaps. The bar chart shows

aggregated measures grouped by values; it can also be used as a histogram by binning numeric

�elds. The heatmap, a generalization of density plot, allows users to see the interaction between

two dimensions; aggregate values are encoded using a color scale. Each dimension of the heatmap

can be binned. Other visualizations can be implemented in this system; in theory, any aggregation-

oriented visualization [54] can be accommodated.

Because many queries have long tails, Pangloss limits the number of bars or cells that can be shown

to a top k and shows a warning if groups are hidden (Figure 6.3-A). When dealing with samples,

the values further down the tail are based on fewer samples, and so are likely to be very uncertain;

we chose not to add tools to scroll over to the tail of the distribution. Of course, an analyst can

�lter the highest values, working their way down the distribution.
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Figure 6.2: The Pangloss UI, exploring a �ight delay dataset, with a list of �elds (A), chart

speci�cation forms (B), a text�eld for �lters (C), zoom speci�cation (D), approximate visualization

(E), visualization of uncertainty (F), �eld for annotations and “remember” button (G), and a list of

views in the history (H). Two precise results are ready, while a third is loading.

The distribution uncertainty of the approximation is displayed above the main view (Figure 6.3-B).

The system computes con�dence intervals for each group; however, these per-group intervals

are worst-case estimates (Figure 6.1). For bar charts, Pangloss draws the con�dence intervals

directly on the bar chart. As there is no standard way to show con�dence intervals for heatmaps,

Pangloss instead displays a second parallel heatmap that shows uncertainty (Figure 6.8, right). In

all visualizations, tooltips show the group name or bin bounds, the approximate value, and the

uncertainty (Figure 6.4).
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A

B

C

Figure 6.3: A bar chart for a result with a long tail. The view warns that it only shows the top

groups (A). Above the chart is the distribution uncertainty (B). Tooltips in bar charts are shown for

the area above the bar (C).

Figure 6.4: Left, tooltips for approximations show the group, the value, and the associated uncer-

tainty. Right, tooltips for precise results show how much the estimate was o�.

6.4.2.2 Zooming with Samples

Pangloss supports zooming and �ltering, like most visualization systems. In in-memory visualiza-

tion tools, zooming and focusing only change the domain of the dimensions and measures; the

group categories stay constant. With samples, every zoom focus interaction changes the predi-
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cate, forcing a new query to run on the AQP system. Consequently, the aggregate value and the

uncertainty can change.

As we noted above, the groups themselves can change as the user adds �lters: collecting a new

sample might mean that numerical ranges might expand, and new groups might appear. The

semantics of �ltering, then, call for a design decision. An analyst cannot know whether there are

more groups to be seen until they �lter. If the analyst �lters ten categories down to three, do we

interpret that as a negative �lter, removing seven, or a positive one, limiting to just those three?

The di�erence is that “removing seven” might discover more groups (Figure 6.5).

Figure 6.5: Left, an approximate histogram of origin states for Hawaiian Airlines �ights. Right, if

we �lter out Hawaii, a new query runs on the AQP system and the approximation also shows that

New York and Alaska (arrows) are also origin states. Because the new predicate is more selective,

the uncertainty decreases for all groups.

To ensure that analysts never lose information, Pangloss treats categorical �lters as negative by

default; analysts can explicitly select positive �lters if they need. Similarly, with numerical data, the

domain can change (Figure 6.6); we add an inequality constraint (as opposed to a range predicate)

when the user brushes all the way to the end of an axis.
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Figure 6.6: Approximate histogram at the top shows that Hawaiian Airlines has short range (inter

state) and long range (island to mainland) �ights. The precise histogram below shows additional

�ights around 5000 miles. The range has changed but bins are still aligned.

6.4.2.3 Functions and Transformations with Samples

In most visualization systems, the user can carry out transformations and functions on the data.

For example, it is easy to add a logarithmic transformation over a visualization, or to compute

average by dividing sum by count. Distribution uncertainty, however, is a global measure across a

view. As such, the distribution uncertainty for a value will be very di�erent from the log of that

same measure value; they will be based on di�erent numbers of samples. Just as zooms must be

computed as separate computed queries, so too must be transforms and functions.



146

Many existing visualization systems and techniques build on assumptions that are not true when

samples are used to approximate results. With samples, we cannot assume that the result of an

aggregation query does not miss groups. Consequently, if we calculate the average of a measure as

the ratio of the sum and the count, we can only do so for the common groups in the two samples.

We cannot, however, compute the combined distribution uncertainty.

6.4.3 Remembering Views and History

The heart of optimistic visualization is the process of selecting a view and re-running its query to

get a precise result. In Pangloss, we call this remembering the view. We wish to support analysts

being able to look back at a past view, and verify the observation they made with it.

One important design decision is which views should be remembered. We considered verifying

every past view that Pangloss produces, modeled after Graphical Histories [90]. There are several

disadvantages to keeping this complete history. First, we expect users to review the precise views;

it would be overwhelming to review every view. Second, precise queries are computationally

expensive; issuing hundreds of them can overwhelm back-end data systems. As such, we want to

encourage users to remember only views that are relevant for observations.

In Pangloss, we decided to make this an explicit process. The “Remember” button (Figure 6.2-G)

stores the view in the history and runs the precise query in the background. We would like to

encourage analysts to track the observations; we support it by allowing them to add a small textual

annotation describing the remembered view.

The entries in the history (Figure 6.2-H) change when a precise result is available: we render

approximate views in orange shades, and precise views in blue. Views in the history are immutable,

but users can revise their annotations to note new information. In addition, users can make a

mutable (and approximate) copy of the view if they wish to modify it.
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Queries for precise answers are sent to a commercial SQLServer database. On current hardware

precise queries return within 30seconds to a few minutes for datasets of around 50GB to 1TB.

6.4.4 Visualizing Approximation Error

Once the precise query has completed, an analyst must be able to verify whether their observation

during the exploration was justi�ed. Several types of changes might occur between the approximate

and the precise views. First, the values of some groups can change; if the chart is sorted, this also

means that bars might be in a new order. Second, some groups that were not in the chart before

might have been added. Last, binned data might change its range.

We wish to support the analyst in comparing the approximate and precise views.

What should happen when a bar is added, or the relative order of sorted bars changes? There are

advantages to both maintaining stability, by keeping the layout of the approximate visualization

with revised values, or precision by showing the precise view. We settled on the latter, because our

major goal is encouraging users to interpret the view they see. The �nal visualization emphasizes

the precise values.

Visualizing the di�erence and the true values in the same chart poses challenges similar to uncer-

tainty visualizations; we use similar methods. Pangloss superimposes the approximate value on

the bars as orange lines, as in Figure 6.7. This makes changes in order very visible, as the orange

lines no longer decrease monotonically. When a new group appears, we highlight it with a gray

striped background (Figure 6.9, right). It is worth noting that a histogram’s range might change

between sample and �nal. Therefore, in the precise query, we �x the bin width and the o�set so

that the precise histogram always aligns with the approximate one (Figure 6.6).

For heatmaps, one chart shows the true value, while the approximation error is shown in a separate

chart (Figure 6.8). The analyst can toggle between seeing absolute error, which shows the di�erence

between the estimate and the actual value, and relative error, measured as a percentage. We found
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Figure 6.7: Above, approximate bar chart for count of �ights out of Washington state, grouped

by airline, with per-group con�dence intervals and distribution uncertainty. Below, the precise

result for the same chart shows the values as blue bars, the approximate result as orange lines, and

highlights airlines that were missing from the approximation (e.g., Independence Air (dh) with

169 �ights).

that each is useful for di�erent circumstances: relative error is good when cells have similar values;

on the other hand, a small amount of error can still be thousands of percentage points from a small

cell value. Consistent with how new bars are highlighted, any new cells have a diagonally striped

pattern (Figure 6.9, left).
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Uncertainty
Approximation Error

Precise Result

Figure 6.8: Approximate (left) and precise (right) heatmaps, examining origin and destination

states for Hawaiian Airlines. (Left) The approximate view shows the estimated count above and the

uncertainty below. (Right) The precise view shows the count above and the approximation error

below. Both lower images toggle to show relative or absolute di�erences.

6.5 User Studies

There are several motivating concepts behind Pangloss that we wished to validate. First, are

analysts comfortable with incomplete or inaccurate results, and are they willing to use them to

explore approximate data? Progressive visualization systems [62, 158, 210] allow analysts to linger
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Figure 6.9: To draw attention to new groups, the corresponding cells in heatmaps (left) and bars

(right) are highlighted with a stripe pattern.

at one view until it reaches a level of accuracy; Pangloss does not. Second, optimistic visualization

expects users to proceed with their exploration even without precise results; we wanted to know

whether they would do so. Last, we wanted to know how users would interact with precise results,

and whether checking those results would interfere with their �ow.

We believed these questions would be best addressed by collecting rich stories of users interacting

with the system; we modeled our user study after Fisher et al. [62]. We carried out two studies. We

�rst wished to establish that Pangloss works as a data analytics toolkit that can enable users to

come up with usable insights. We chose a single dataset and recruited data analysts from within

Microsoft. We encouraged them to explore the data, providing them with guiding questions. The

shared dataset allows us to factor out feedback speci�c to the data.

We wanted to also validate that this system works for real-world situations. We solicited data

scientists from Microsoft, and asked them to share a current dataset with us; we loaded it into

Pangloss. We then invited them to explore the system and interviewed them about their experience.



151

6.5.1 Flight Delay Study

Our �rst study used the “BTS Flight Delays dataset” [205]. The full dataset is 70GB, and contains

records on about 170 million commercial domestic �ights from the last three decades within the

United States. Each record represents one �ight, with its arrival and departure time and location,

as well any delays and reroutes in �ight. There are 109 �elds in the raw data; for the user study, we

removed some sparser �elds, to result in 78 �elds. Pangloss can maintain the 100ms response time

for histograms and bar charts at a 1%–2% uncertainty level; heatmaps had higher uncertainty of

2%–5%. Views with averages and highly selective predicates have much larger errors. In contrast,

a full SQL query on the dataset runs in one minute.

We recruited �ve data scientists for the study. All participants were associated with a product or

consulting team, including IT Support, software development, and post-deployment monitoring.

Each of them was familiar with creating visualizations in R, PowerBI, Tableau, or Excel. We call

them P1 through P5 below.

Three of the sessions were carried out in person; two others, with analysts located further away,

were carried out by video-sharing session. At Microsoft, it is not unusual to meet via video-sharing;

all users were familiar with the technology. Sessions lasted an hour. We started sessions with a

tutorial, which guided subjects through a series of training questions to help them learn the system.

We then invited them to explore the data using the tool; we gave some introductory questions but

invited them to pursue questions that caught their curiosity for half an hour. At the end of the

time, if the users had not reviewed precise results, we encouraged them to do so. Near the end of

the hour, we asked our subjects to discuss advantages and trade-o�s of Pangloss.

We encouraged users to think aloud; all sessions were voice- and screen-recorded. Remote users

used the tool in their web browser, so that they did not su�er from video-sharing lag.
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6.5.1.1 Flight Delay Study Results

During the study, most users were resistant, at �rst, to explicitly recording their observations: we

needed to remind almost all users to record observations they were making. After the �rst few,

however, it became more habitual for them to record their observations over time. Only one user

refused to use the “remember” function.

We had feared that some users would be unwilling to explore their data, knowing that their initial

results were inaccurate; perhaps they would wait to ensure their earlier investigation was valid.

We saw this only once; P2, mid-analysis, paused to wait for his remembered view to complete. A

moment later, impatient, he resumed his �ow, and continued to “remember” things. By the end

of the study, four of our users were regularly “remembering” visualizations. Users “remembered”

4-7 views during their half hour.

Some users found opportunities to check in on their history during the study. P4 said, “I was

thinking what to do next—and I saw that it had loaded, so I went back and checked it . . . [the

passive update is] very nice for not interrupting your work�ow.”

Interacting with Big Data: All users had dealt with slow queries in big data systems, and appreciated

the speed of Pangloss. As P4 said, “[with a competitor] I was willing to wait 70-80 seconds. It

wasn’t ideally interactive, but it meant I was looking at all the data.” All the users commented on

the responsiveness of the system.

Our users were also familiar with sampling; for example, P4 had used sampling for other projects:

“We can’t look at all the sensor data at once—it wouldn’t work. So we sample.”

Waiting for Precise Results: We wondered whether analysts would �nd the precise version of the

visualization useful: after all, they had already seen the approximate version. P1 said, “From my

perspective, [uncertainty] almost passed me by. Nothing that I saw after-the-fact fundamentally

changed any conclusions.”
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Despite that, this made Pangloss feel safer to him: P1 said he checked whether the precise results

“are fundamentally di�erent in a way that warrants my attention—if the top 5 are di�erent, that’s

important.” P5 used precise results to feel more con�dent in the approximations: “[The precise

view] is an enabler. [Sometimes] you have a doubt whether sampling has made it better or worse,

but seeing something right away at �rst glimpse is really great.”

Our participants most often decided to remember very uncertain results: the large distribution

uncertainty and wide con�dence intervals cued them to “remember” their �ndings and request

more precise results. In contrast, they chose to trust more certain results.

The data scientists also talked about the importance of presenting precise data to their teams. While

they might be able to use sample data with approximation, P3 said, “I know some information

gets lost when I use samples . . . If I want to give my boss speci�c numbers, I don’t want to use

samples.” P2 said, “full and complete data always makes the most sense.”

We wondered whether going back to check the results of queries would disrupt their work�ow. P4

felt that the color change to cue the arrival of precise results was not disruptive, and “the ability to

keep working . . . and know that you will get a complete visualization is very handy.”

Limitations: Users did bump into the limitations of Pangloss, which shows speci�c visualizations

of aggregate data. P5 said “When I’m using R, it’s like I’m on a mountaintop, I can go anywhere I

want; when I’m using your system, there is a path that I need to follow.” Similarly, P3 wanted to

see lower-level data: “you want to go down to the sample level to see which samples are causing

this pattern.”

6.5.2 Case Studies

Our second study emphasized real-world use of datasets. We recruited data analysts from an internal

list of data scientists. We looked speci�cally for users who had datasets over 10 gigabytes with

structured tabular data, and selected three candidates. We ingested their data into Sample+Seek,
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and then scheduled meetings with the groups: we met with David in person, while we met remotely

with Madhu and Faraz. 1

We followed a similar protocol to the Flight Delay study: each session started o� with a short

demonstration and tutorial. When subjects made observations out loud, we encouraged them

to “remember” the views. At the end of the experiment, if they had not reviewed some of the

remembered values, we encouraged them to click through those observations, and to evaluate

whether their observations had changed. These case study sessions ran between an hour and a half

and two hours.

6.5.2.1 Case Study 1: David and Software Crashes

David works on the telemetry team for a family of software products. His team is responsible for

helping developers identify which features are causing problems for their users. They do so by

examining telemetry across multiple builds of their software, both beta and released, categorizing

the circumstances under which software fails.

David’s dataset consists of activities that users are carrying out in these products with error

information. Their data collection gathers 100TB/day of raw timestamped event data. This is

too much for their system (or for Pangloss) to analyze; instead, his team pre-aggregates this

data into summaries, which average around 200MB/day. These summaries consist of activities,

hierarchically categorized by product and feature; broken down by minute of the day; it stores the

number of times that users attempted to use the feature, and how many of them succeeded.

His team’s visualization technology cannot view more than a gigabyte of data, representing a week

of data. This can miss out on deployment problems that emerge over longer ranges of time, and

makes it hard to compare between builds of the software. Pangloss was able to load three months’

data.

1All names are anonymized.
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David is used to working with slow queries: as he began to navigate his data, he excitedly said that

“instantaneous visualizations are great!” He freely jumped between di�erent slices of the data,

admiring “the power of being able to pivot so quickly.” David applied multiple �lters to the data,

limiting it by date, code branch, and application.

At �rst, he did not see the utility in remembering his queries: “going back and looking at the

more precise data would be valuable if I were drawing any real conclusions—if I was going to

send an email to somebody. But in a lot of these cases, if I didn’t see anything too exciting in the

approximate number, I’d be OK with that.” We insisted he remember his �rst few queries to get

precise results; by partway through the session, he did so on his own. When we went back through

his results at the end, he re�ected “Now that I’ve been sitting here for an hour, after I go back, it

makes a lot of sense [to have these annotations], but as I was doing it, I was thinking, ‘I want to

move on, I want to move on.”

Like some users in the �ight delay study, he began to think about the value of precise data: “A lot

of what we do gets used in ship rooms and standups; ship decisions are made on those numbers.

Those meetings cost thousands of dollars a minute. You need super-precise data for them.”

During the study, David ran into a surprising result: one day had an aberrantly low value for a

particular data series. He went o� wanting to delve into it more: “I’m going to go over this with

my team and send them some screenshots. I want to �nd out what happened on 8/8 with this

stream.”

David had been limited by the amount of data they collected; Pangloss allowed him and his team to

broaden their view.

6.5.2.2 Case Study 2: Madhu and Search Terms

Madhu works on the advertising platform for a search engine. His team is responsible for trying

to predict trends in searches and keywords. They analyze usage data from the search engine,

looking for terms and concepts that are gaining in popularity. Madhu wanted to look at trends
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and changes in the popularity of these topics across di�erent countries. His dataset consisted of

topics, with categories, countries, and timestamps. As in David’s case, the dataset he gave us was

pre-aggregated: each of these categories was then labeled with the number of impressions—that

is, the number of people who searched for terms that matched this category—and the number of

people who clicked through on those searches. Madhu gave us 994 million rows of data, covering

eight months of usage.

Madhu was excited that Pangloss could let him get to know the shape of his full dataset. In the

past, he had not felt like he could explore his data: queries took too long, and so he would focus

only on speci�c questions that he needed to answer.

Madhu searched carefully for patterns: he wanted to �nd ways that the data changed in regular and

systematic ways. He spent most of his time in the heatmap, looking at a dozen or more keywords

at a time. He did manage to �nd trends in the data, including a weekly pattern in one keyword,

and another that spiked over a month. He found these results useful enough that he later asked

whether he could send us a new, less aggregated dataset, and asked for a follow-up appointment

with his team, in the hope that more of his colleagues had an opportunity to understand how the

data they worked with operated.

6.5.2.3 Case Study 3: Faraz and Social Computing

Faraz is a data scientist who works with a Twitter “�rehose” feed. One of his projects is to assess

the credibility of Twitter users. His team expects that Twitter users can be distinguished by their

followers lists, and by the keywords they use. His dataset looks at Twitter users, their hashtags,

and the people who they follow; his statistical algorithms also label users who are likely to be

spammers.

Faraz looked at the top k charts of the most commonly-used tags, �nding terms like “brexit” and

“rio2016” were popular; he contrasted this list to keywords tweeted by persons who were labeled as

likely to be spammers. Looking at the precise view, he asked to look further down, at tail queries.
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Faraz encountered some unintuitive aspects of dealing with sample-based analysis: for example,

when seeing the top ten keywords, his �rst impulse was to “remember” just the top keywords.

This would not have the desired e�ect: the full query might discover new words, but his �ltered

list would not show them.

Faraz became accustomed to seeing very high uncertainty levels for his high cardinality data. He

began to use the approximate query as a draft, less concerned about the answer it showed and

more concerned about whether it showed that he had the right query. “I’m doing exploratory data

analysis and I don’t need full accuracy.” When he accidentally formed a view with a bad �lter, he

quickly noticed the approximate view was incorrect and adjusted the query; after he felt sure he

had the right query, he remembered the view.

Pangloss allowed Faraz to explore complex aspects of his data rapidly, and come back to check his

results later.

6.5.3 Discussion of User Studies

We were grati�ed that users were able to use Pangloss to explore their large datasets, and take away

actionable and novel conclusions. Users were willing to trust the approximation, and to generate

precise results afterward.

Our user studies taught us more about how users see approximate data. Our users see precision

broadly: they want both rapid interaction for exploratory phase, and to present precise results to

decision makers. Precision is not just a way to verify the approximation, but is an end in itself. In

small-data systems, the same tool can ful�ll both these roles; here, Pangloss separated those goals.

The process of recording observations during exploratory visualization was unintuitive to all our

users. Most of our users were grateful to have been forced to record their observations, and later

found it useful to reconstruct their path. This suggests that Pangloss does not have the right

balance of encouraging users to record their observations. There is a broad spectrum of possible



158

approaches–from notebook interfaces that require explicit queries, to systems that automatically

recommend visualizations [224]; this design space would reward further exploration.

Users wanted more features from Pangloss: several wanted to be able to see the underlying data:

although big data demands aggregations, analysts wanted to see individual records to spot-check

their results, and to get a sense of what sat in a bucket. Other users asked for transformations,

aggregations, and ways to project the data that Pangloss does not currently support.

6.6 Conclusion

We note some implications of optimistic visualization that emerge from the user study and our

design work.

The concept of optimistic visualization can help users adopt approximate and progressive systems.

It is comparatively easy to implement, but the bene�ts for the users are large. For example, user

David used optimism to build con�dence in the approximate results after seeing the results of

precise queries. Some of our users needed precise data. Under progressive visualization, that

means waiting until computation �nishes. In Pangloss, they could run it in the background. Future

work should combine progressive and optimistic, and explore the design space to understand what

best bene�ts users: a system might improve the results for remembered views in the background,

allowing the user to check on progress and how the approximation has changed.

Existing visualization tools and techniques make assumptions that do not hold for approximate

results. In a sampling environment, more selective predicates can have surprising e�ects. Additional

groups may appear, and both aggregate values and uncertainty levels might change. The same can

happen in the transition from approximate to precise results. New visualization systems must be

able to handle shifting axes and changing color scales. We will need to develop a vocabulary of

visual cues to highlight order changes, new groups (Figure 6.9), and other qualitative changes.
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There are many opportunities to re�ne the user experience of optimistic visualization for data

exploration to address the issues raised during the user studies. One question is how to identify

whether a precise view is meaningfully di�erent from the approximation. In Pangloss every precise

result is treated the same; it could be valuable to highlight views with signi�cant di�erences.

Whether a change is signi�cant depends on the observation: the observation that A > B is di�erent

from observing that A > 50; the precise results might invalidate one but not the other.

One interesting question is in deciding what to remember; our users found that the major challenge

when using the system. In Pangloss, users must select views explicitly. Pangloss supports an

exploratory process; there are cues in the sets of visualizations that the analyst creates to decide

which views are worth remembering. With better provenance tracking, we might be able to better

decide which observations should be remembered; we might also group visualizations in the history

by their broad tasks.

This thesis contributes the concept of optimistic visualization. We have shown a �rst implementa-

tion of optimism; and discussed ways in which the exploratory data analysis process is di�erent

under approximate data. We have shown ways to visualize the di�erence between the approximate

and precise view. Last, we have presented the results of eight users working with an optimistic

system, and showed that it can help meet their needs for both speed and precise results.
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7 Conclusion

This thesis investigates the design of new languages and models for visualization as well as

interactive systems for scalable visual analysis. These ideas are implemented in tools for data

analysis and communication that richly integrate the strengths of both people and machines. In this

section, we review these contributions, their limitations, and look into possible future directions of

scalable visual analysis systems.

7.1 Review of Thesis Contributions and Impact

In this thesis, we proposed that high-level visualization languages for both human authoring

and programmatic generation facilitate systematic exploration of the design space, reuse across

computing environments, and automatic optimization. To support this hypothesis, we contribute

Vega-Lite as a language for users to rapidly create statistical graphics; and developers to build

applications with. Vega-Lite’s focus on programmatic generation enables systematic exploration

of the design space of visualization for example in Voyager and Draco. Vega-Lite can be used on

servers and in the browser, written by hand or generated by end-user applications, and there now

exist wrappers in various programming languages (including JavaScript, Python, and R). Vega-Lite

speci�cations can omit low-level details so that the runtime system can optimize the execution;

the runtime can optimize both the encoding decisions (e.g., the choice of color palette) and data

processing (e.g., remove redundant computation).



161

We also hypothesized that formal models of design built on these representations enable shared

and extensible knowledge bases. Draco extends Vega-Lite with shareable design guidelines, formal

reasoning over the design space, and visualization recommendation. In Draco, users can omit

any part of the speci�cation and hand over decisions to the recommendation engine; which needs

to implement many design rules. With software engineering and developer productivity in mind

we describe these rules as constraints; with evaluation handled by high-performance constraint

solvers. Vague design guidelines that were scattered across books and research papers are concrete

and actionable in Draco.

Lastly, we hypothesized that combining the strengths of people and machines, and co-designing

the data processing systems and their user experience, enables interactive visualizations of billion-

record datasets. Falcon supports brushing and linking across multiple charts of billion-record

datasets. It solves the problem of latency between the server and client by prefetching the data

that is needed for the interaction with the current view; at the cost of some latency for interacting

with a di�erent view. This trade-o� is informed by research on the perception of latency and in

particular the fact that brushing interactions are latency sensitive while switching views is not. We

take a similar user-experience perspective on approximate query processing and propose optimistic

visualization. The core idea is that we can trade o� accuracy for response time but only temporarily;

without optimistic visualization users may lose trust, which hinders adoption.

As part of this thesis, we developed four systems; some with more direct impact than others. Our

papers were well-received at conferences. The open source library has become a popular tool in

the Python and JavaScript data science communities. Draco has also caught interest from industry.

Falcon’s potential has been recognized in industry despite it being a prototype. Pangloss was

well-received at academic conferences and workshops but the adoption of approximate query

processing systems is still in its infancy; optimistic visualization could be more relevant in the

future.
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7.2 Limitations of Perceptual and Interactive Scalability

The ultimate goal to address perceptual scalability is a set of design guidelines for visualizing large

data and smart design assistants that help users apply these guidelines in their exploration tools.

While more work is needed to de�ne a comprehensive set of guidelines, we believe that Vega-Lite

and Draco are well-equipped to formally express such guidelines and develop tools based on them.

The ultimate goal of interactive scalability are tools that instantly respond to user interactions.

These ideal tools behave the same regardless of the size of the data. Falcon achieves this vision for

brushing and linking across charts of billion-records datasets. Optimistic visualization in Pangloss

enables exploration of even larger datasets through approximation. Falcon and Pangloss, however,

are bespoke prototypes for scalable visual analysis. They only support a narrow range of visual and

interactive designs. Vega-Lite and Draco support a rich (yet constrained) range of graphics. In

the future, we hope to see systems are both expressive and scalable. There are already prototype

applications that run expensive portions of a Vega-Lite data�ow on a powerful server [115, 131].

Our hope is that these e�orts lead to systems that achieve interactive scalability for common

visualizations expressed in Vega-Lite.

7.3 Limitations of the Systems

As discussed in subsection 3.7.3, Vega-Lite is designed for rapid authoring of statistical graphics

and the model as well as the implementation have limited expressiveness. Even though we are

adding new features in every new version, Vega-Lite’s design space is constrained to common

chart designs for analysis. Using Vega-Lite for non-cartesian plots or bespoke designs is tedious

at best.

Similarly, Draco’s model is limited to express linear models over constraints, hindering the de-

velopment of comprehensive models of visualization design section 4.7. Our implementation is

currently limited to single views. Building on the design of Vega-Lite, Draco shares its limitation to
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cartesian designs. We hope to alleviate some of these limitations in future versions of the software

but our focus on common statistical graphics will restrict the scope for the foreseeable future.

Falcon, as a prototype system, demonstrates that fast linked interactions over large data are possible.

As discussed in section 5.6, our implementation as well as the model have some limitations. Our

current implementation is limited to count aggregates; Falcon only supports binned aggregate

visualizations with up to two spatial dimensions; visualizations with categorical dimensions such

as bar charts are planned for future versions. To make Falcon usable for larger datasets, future

versions may use approximate aggregates or more aggressive prefetching to reduce view switching

latencies.

In section 6.6, we describe a new design space for applications building on the ideas of optimistic

visualization. Our implementation in Pangloss is only one point in this design space. Pangloss also

showed new challenges that arise with the use of optimistic visualization: When should users be

noti�ed? How we avoid users only remembering the approximate results and ignoring the precise

results? Future work in this space must answer these questions to design more e�ective visual

exploration systems.

7.4 Future Directions

Here we outline high-level directions that build on Vega-Lite, Draco, Falcon, and Pangloss towards

a future of scalable visualization systems with tighter human-machine integration.

7.4.1 Design Goals for Scalable Visual Analysis Systems

Systems should automatically ensure that interactive visual analysis interfaces are appropriate for

the amount and distribution of the data. Ful�lling this vision requires innovations in di�erent

areas of computer science: Visualization, Data Management, Human Computer Interaction, and

Programming Languages. These traditionally separate concerns interact in complex ways. For

example, an expressive visualization algebra that a database can optimize is considered a grand
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challenge of scalable visualization. To unify the various components (e.g., automated reasoning,

full-stack optimization, and making approximation accessible) in a single system, we must explore

the design space and make principled trade-o�s informed by the complementary strengths and

weaknesses of computers and people. Future research in this area may contribute systems that

use automated reasoning over domain-speci�c representations of data analysis to inform how to

e�ciently run data science pipelines and enhance our ability to analyze and communicate data.

7.4.2 Full-Stack Optimization for Interactive Data Systems

Traditionally, the di�erent stages of a data processing pipeline have been optimized as independent

components, with optimizations focused on either the user interface or the data processing system.

However, many optimizations—such as prefetching and indexes per view in Falcon—are born out

of a holistic consideration of front-end and back-end concerns together.

Future data science systems should integrate various optimization strategies such as indexing,

prefetching, perceptually motivated cost models, and algorithms that optimally place data and

computation on the client or the server [135]. By leveraging ambiguity and reasoning about

declarative speci�cations of the data transformations and visual encodings such as Vega-Lite,

systems could apply the optimizations automatically.

For example, new systems can implement appropriate approximations (e.g., stop computation

once some perceptual tolerance is reached) and prefetching methods (e.g., to speculatively query

for data a user is likely to request soon). Falcon already implements a simple prediction model.

We developed the prediction model in Falcon by hand and hard coded it into the system but in

the future we might be able to learn a model that can adapt to the user’s exploration. Declarative

speci�cations of the visualization and possible interactions such as Vega-Lite will be crucial in this

endeavor.

An essential aspect of this research is to integrate various optimizations into one system so that

we can systematically evaluate design trade-o�s. In subsection 4.6.4, we discussed how Draco
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can choose appropriate sampling strategies, data transformations, and visual encodings based on

the analyst’s goals. Future systems building on these ideas should suggest scalable interactive

visualizations that are compatible with data processing techniques such as precomputation in

Falcon. The analyst can then interact with their data without having to worry about idiosyncrasies

of the querying system.

7.4.3 Automated Reasoning over Visualization Knowledge

While Draco currently supports automated reasoning for individual static charts, a large swath of

the visualization design space remains uncharted. Future research may extend Draco to interactive

multi-view charts [59, 167] and integrate richer task models. Another exciting avenue for future

research is to use Draco as an intermediate formalism for natural language interfaces for data

exploration. Tomanage Draco’s expansion in scope and complexity, we will need interactive systems

that enable quick adaptation of the knowledge base to an organization’s needs. By integrating

Draco into existing analysis tools like Altair [211], one can collect user actions to continuously

improve Draco’s suggestions.

As we increase automation and provide computational guidance, we also need to preserve a balance

between automation and autonomy of the analyst. Only then can we get the bene�ts of scale and

not lose the bene�ts of human expertise and intuition. People should stay in control and maintain

agency. As one aspect of preserving agency, systems should always explain their recommendations.

They should let people override any default decisions. For example, a design recommender should

warn designers against misleading plots (like a linter or spell checker) and propose alternatives with

explanations to educate novices and improve visualization literacy. Another aspect of preserving

agency is to ensure that tools are not causing undue speci�cation friction when people know

what they want. While we believe that Vega-Lite has low friction, evaluating how much friction a

speci�cation language causes is an understudied future research area.
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Draco draws a new frontier of research. Studying how people use visualization models opens

opportunities to make models more personal and adapt to speci�c domains. Draco’s formal model

of visualization design facilitates structured exploration of the design space of visualizations.

Studies of human perception can not only inform the visualization model in Draco. We may also go

the other way and using Draco’s reasoning power to identify holes in our knowledge of expressive

design. By formalizing the results of perceptual studies, we may assess whether they are in con�ict

with or subsumed by existing knowledge. Based on these results, active learning techniques could

inform experiments that close gaps in our knowledge.

7.5 Concluding Remarks

As data scientists face increasingly large and complex datasets, they need new means to explore

and analyze this data as though it was small and clear. Towards these goals, we present languages

(Vega-Lite) and models (Draco) for visualization design that power interactive systems for scalable

data analysis (Falcon and Pangloss). Going forward, I hope and expect that these systems and

the ideas they spark lead to a new generation of tools. These tools will make data analysis more

e�cient and enjoyable as intelligent assistants automate the tedious parts of analysis. These

assistants build on evolving models of best practices. The next generation of visualization tools

will also make analysis results more dependable as they automatically optimize data processing

and check speci�cations for various pitfalls.
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