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ABSTRACT

In this demonstration, we will showcase Myria, our novel cloud
service for big data management and analytics designed to improve
productivity. Myria’s goal is for users to simply upload their data and
for the system to help them be self-sufficient data science experts on
their data — self-serve analytics. From a web browser, Myria users
can upload data, author efficient queries to process and explore the
data, and debug correctness and performance issues. Myria queries
are executed on a scalable, parallel cluster that uses both state-of-
the-art and novel methods for distributed query processing. Our
interactive demonstration will guide visitors through an exploration
of several key Myria features by interfacing with the live system to
analyze big datasets over the web.

Categories and Subject Descriptors

H.2.4 [Database Management]: Systems—Distributed databases,
Query processing, Relational databases
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1. INTRODUCTION

Over the past year and a half, our group at the University of
Washington has developed a new online service for managing big
data. Our service, called Myria, now runs on 100-node Amazon
EC2 deployments and processes terabytes of data from applications
in astronomy, oceanography, social media, and cybersecurity, as
well as standard benchmarks. More importantly, Myria is set up as
a cloud service that users access directly from their browsers, dra-
matically reducing the “activation energy” required to be productive
with big data. This demonstration will showcase the overall Myria
service and system and several of its specific novel features.

Myria motivation: The analysis of massive-scale datasets has
become an important capability both in industry and in the sciences
and many systems have recently emerged to support it. But deep
data analytics today is a high-touch business: it requires a highly
specialized expert who thoroughly understands both the application
domain and a growing ecosystem of complex distributed systems
and advanced statistical methods, and who needs to perform re-
peatedly a series of data exploration steps to prepare the data for
machine learning and other analyses. Myria aims to make data
management and analysis a pleasant and productive experience.
Our project started from a re-examination of the foundations of big
data management with the ultimate goal of significantly improving
productivity in big data management and analytics.
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How can we improve productivity in the analysis of big data?
We identify three key challenges that need to be overcome, which,
in ensemble, are not met by any system available today, and we
describe how Myria tackles these challenges head on.

e Cloud service deployment. For many of today’s systems, users
must still purchase and administer physical or virtual computers;
even with a pre-configured cluster, the setup instructions on the
Hadoop, Spark, or GraphLab project websites take hours to days to
execute successfully the first time. For many users, the complexity
and cost of startup and continual administration and maintenance
are prohibitive. Some data management systems are also available
as cloud services, but these services often offer obscure black-boxes
that make it difficult for users to predict and debug performance or
to predict and control costs.

In contrast to existing systems, Myria is designed as a cloud service
from the ground up. The primary interface is a web browser that
uses the same programmatic REST interface as any low-level sys-
tem tools. From innovative service level agreements and resource
management, to multi-language query support, to graphical query
debugging, Myria reinvents the interface between users and cloud
services. Myria’s goal is for users to simply upload their data and
for the system to help them be self-sufficient data science experts
on their data — self-serve analytics.

e Programmability. SQL is perceived as ill-suited for analytics
tasks, motivating a number of extensions — window functions,
pivoting, UDAs, UDFs, in-database analytics packages such as
MADIib, etc. But analytics remain a second-class feature in these
RDBMS-based solutions, requiring significant expertise by both
users and algorithm designers. Hadoop, GraphLab, Spark, and
related systems require users to develop algorithms in low-level
imperative languages, reducing opportunities for algebraic opti-
mization and reuse. Language layers on top of these runtimes (Pig,
Hive, Shark, etc.) limit expressiveness to that of the language.

Myria strikes a balance between these extremes: we adopt a core
programming model that extends relational algebra with iteration
that affords rich, iteration-aware optimization without sacrificing ex-
pressive power. Guided by prior experience in delivering database-
as-a-service capabilities to scientists [3], we aim to support both
“users” and “algorithm designers” with a common set of web-based
interfaces, languages, and APIs that scale gracefully from simple
SPJ queries to advanced application-specific analytics tasks. Like
Hyracks, we emphasize the use of core parallel query processing
concepts as a first-class concern, but we place less emphasis on
supporting legacy code written for Hadoop or Pregel and more em-
phasis on empowering non-specialists, especially scientists. Myria
currently supports SQL, a variant of Datalog, and a new hybrid
declarative/imperative analytics language called Myrial..

o Efficient processing. Finally, users want good performance,
so our system must be able to optimize and scale queries. Myria
puts a strong emphasis on efficient query processing, by combining
state-of-the-art and novel ideas in both theory and systems.

With its foundation in relational algebra, we understand well how
to optimize and parallelize many Myria queries. However, opti-
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Figure 1: Myria System Architecture

mizations for queries that combine basic algebra, recursion, and
aggregations are still not well understood. The Myria team is de-
veloping new techniques for large distributed query processing [2],
and we are validating and leveraging them using the system itself.

For scalability and efficiency, Myria’s execution layer, MyriaX
adopts state-of-the-art system design principles. MyriaX uses a
parallel, pipelined, possibly cyclic graph of dataflow operators with
built-in support for asynchronous evaluation of recursive queries.
Our research extends the system in many important directions
including lightweight failure handling in iterative computations and
dynamic resource allocation for elastic scalability.

In this demonstration, we will showcase Myria’s capabilities both
as a cloud service and a big data management system. We will do
so through a coordinated set of high-level and low-level demonstra-
tions on multiple laptops. The demonstrations will use a 64-instance
Myria deployment and be driven by real queries from domain scien-
tists in astronomy, oceanography, and social science.

2. MYRIA OVERVIEW

In this section, we present a brief overview of Myria as context
for understanding the novel features we will demonstrate, which
are described in subsequent sections. Figure 1 shows the overall
architecture of the Myria system.

The primary interface to Myria is a frontend website hosted on
Google App Engine, with software components as shown above the
dashed line in Figure 1. The screenshot in Figure 2 shows the main
query editor. For our supported languages, Myria provides a set of
sample queries (left) as a starting point for query authoring (right
top). Myria parses the query to basic relational algebra (right middle)
and produces an optimized, parallel, distributed physical plan for a
shared-nothing cluster (right bottom). The user can visualize a query
plan via the pop-out links, and can submit the query. Other panels
let users examine datasets in the system, previously submitted and
running queries, and provide other features.

The center component in Figure 1 is the master. It hosts the
REST interface used by the web UI and other tools, maintains
metadata about system resources and datasets (e.g., used by the
query optimizer and web UI), and it mediates access to the cluster.

The bottom part of Figure 1 shows the architecture of Myria’s
query execution engine, MyriaX. MyriaX is a pipelined, parallel,
distributed dataflow evaluation system that takes a (possibly cyclic)
graph of operators and executes it efficiently on a shared-nothing
cluster. This pipeline is divided into fragments, which are trees
of operators that can operate on a single compute node in a single
thread; fragment leaves and roots are typically system I/O operators
that read, write, or transfer data. MyriaX can incorporate data from
many sources, such as relational DBMS, Hadoop FS, Amazon S3,
public data on the Internet, etc. Additionally, MyriaX can scale the
cluster up and down dynamically as the system workload changes.
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Figure 2: Myria Browser-based Front-End
3. DEMONSTRATED FEATURES

We divide our demonstrations of Myria features into three phases:
1) Myria to its users, 2) Myria’s execution engine and algorithms,
and 3) Myria as a service. Combined, these features show how
Myria comprises a system designed from the ground up to improve
productivity for both nascent and experienced data scientists (1 and
2) in an efficient and scalable, and hence sustainable way (2 and 3).

3.1 Myria to its Customers

In this phase of the demonstration, the visitor will act as a scientist
analyzing a big dataset.

3.1.1 How users access Myria

The website described in §2 is the principal way that most users
will access Myria, but this is not the only way to use Myria. We de-
signed the REST interface to Myria—the same interface used by the
website—to be sufficiently flexible to support an entire ecosystem
of clients that connect with Myria programmatically. Supplemental
clients provide tools for: data management tasks such as upload-
ing a folder of related datasets and automatically building a union
for entire-corpus analysis; downloading data for offline analysis in
domain-specific tools; and exploring data visually.

3.1.2  Supported query languages

Myria accepts queries written in SQL, Datalog, or a new Pig
Latin-like language we call Myrial.. Based on our experience with
SQLShare [3], we believe that science users can write data analysis
tasks in SQL. We expect Datalog’s declarative style to have similar
appeal, especially for recursive queries. Myria’s Datalog compiler
has support for stratified negation and a variety of simple aggregates.
Myria uses semi-naive evaluation to efficiently compute recursive
results, using asynchronous computation when possible.

MpyrialL is a hybrid imperative/declarative language, similar to Pig
Latin [7] extended with iteration. We developed Myrial. because
certain iterative programs—in which facts from one iteration are
aggregated to produce the facts in the next iteration, e.g., PageRank—
are cumbersome to express in Datalog and hard for the query execu-
tion engine to optimize. MyriaL lets users directly express efficient
execution strategies, such as custom variants of standard semi-naive
evaluation that overwrite facts rather than accumulate them, when
aggregation is used (e.g., for connected components). Users can also
encode optimizations that incorporate domain-specific knowledge.
Each line of a Myrial. program corresponds to a declarative query
comprising one or more relational algebra operations, expressed
in a comprehension syntax. MyriaL iteration employs a simple
do/while construct, in which the continuation condition is a sin-
gleton boolean relation. Figure 3 shows the MyrialL program for
semi-naive evaluation of graph reachability.



Edge = SCAN (user@uw.edu:edges_table);
Reachable = [1 AS addr]; Delta = Reachable;
DO
NewNodes = [FROM Delta, Edge WHERE Delta.addr = Edge.src
EMIT Edge.dst AS addr];
Delta = DIFF (DISTINCT (NewNodes), Reachable);
Reachable = UNIONALL (Delta, Reachable);
WHILE [+COUNTALL (Delta) > 0];

Figure 3: Graph reachability in MyriaL.
3.1.3  What the user will see and do

For the demonstration, Myria will be pre-loaded with scientific
datasets including an n-body simulation that models matter in the
evolving early universe, flow cytometry measurements of ocean
microorganisms, and the Twitter social network graph [S]. The user
can tour the datasets in the system and learn their relationships by
inspecting provenance trees generated from the Myria query log.

The user will be presented with sample queries in the three lan-
guages. The system will automatically translate user-generated SQL
or Datalog queries into MyriaL to aid in comprehension.

Finally, the user will examine the standard sigma-clipping outlier
removal algorithm [6] to see how it admits domain-specific algorith-
mic optimizations for incremental evaluation. Specifically, we will
guide the user through authoring a sequence of MyrialL programs
which refine the algorithmic and relational algebra algorithms for
noticeable, orders-of-magnitude speedups in query processing time.

3.2 Myria Engine and Algorithms

In the second phase of the demonstration, the visitor will learn
about Myria’s query execution and monitoring features.

3.2.1 Query Execution in MyriaX

As described in §2, Myria’s physical query plans take the form of
pipelined, possibly cyclic, dataflow graphs of operators. In Myria’s
execution engine, MyriaX, data flow between operators takes the
form of batches of tuples, aggregated to amortize per-operator-
invocation overheads. MyriaX uses both standard techniques and
novel algorithms for evaluation of relational algebra. Execution
proceeds in parallel both within a node—multiple independent or
pipelined parts of a query plan can be executed concurrently in sep-
arate threads—and across nodes, in the common case of data-level
parallelism in query evaluation.

MpyriaX natively supports iterative and recursive computations.
For some classes of programs (e.g., reachability, connected com-
ponents, or PageRank), MyriaX provides asynchronous query pro-
cessing capabilities using incremental variants of physical operators
with stream-oriented computation. For the general case, iterative
queries are optimized and executed as a series of synchronous jobs.

3.2.2  Query Monitoring and Debugging

Myria provides extensive visual query monitoring and debugging
functionalities to aid in self-serve data exploration. Myria uses
modern data visualization techniques built on d3.js combined with
Myria’s analytics capabilities to let users interactively explore query
execution profiles. Our in-browser tool provides a suite of visualiza-
tions to enable query execution profiling from various perspectives;
Figure 4 shows an example Myria visualization that shows the ex-
ecution of a parallel join. We found these views to be critical for
performance debugging: (1) The query plan visualization shows a
line chart of cluster utilization for each query fragment, measured
as the fraction of workers executing it. In this view, a long tail
identifies a query bottleneck. (2) The user can visualize commu-
nication between workers in a communication matrix and request
more details on the communication between pairs of workers over
time. (3) Finally, the operator level visualization (Figure 4) shows a
Gantt chart of operators executing a specific query fragment across
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Figure 4: Visualization of 100 ms (z-axis, zoomed via the mini-
map on top) of a query fragment performing a join in parallel
on 8 workers. An operator is visible in the bottom chart if it is
computing at a point in time on the specified worker.

workers. Operators of the specified fragment are shown in unique
colors in separate lanes for each worker. This view serves to identify
or explain low-level implementation problems.

3.2.3 Distributed Join Algorithms

In Myria, we are pushing the bounds of algorithmic understanding
of efficient distributed query execution and putting these ideas into
practice in our optimizer and executer.

To illustrate these novel techniques [1, 2], consider triangles:
Triangles(x,vy,z) :— R(x,v), S(y,z), T(z,x).
A typical parallel database might decompose the computation into

two pipelined hash-joins:

A(x,y,2) = R(x,y) My S(y,z) andthen
Triangles(x,y,z) = A(X,Y,2) Mg T(z,x).
However, such a query plan is highly inefficient if the intermediate
result A is large, since A is shuffled and sent to the next join. For

the Twitter follower graph [5], A contains 9 trillion tuples.

Myria can instead apply the HYPERCUBE algorithm [2], which
computes the triangles using a single shuffling step. The algorithm
assigns each worker node a virtual coordinate in a 3-dimensional
hypercube, (ps, py, p-), and hashes each tuple involving z, y, or
z to the corresponding space. R(x,y) is sent to the xy subspace
containing all nodes of the form (h(z), h(y), *). Correspondingly,
the tuples of S and T are sent to the yz and xz subspaces. Each
node finally performs a local join to discover those triangles (z, y, 2)
that are hashed to its coordinates (pq, py, p-). Myria uses a simpli-
fied Leapfrog Triejoin [9] to compute triangles locally in a single
multiway join step without computing the large intermediate results.

This single-step algorithm transfers only the input datasets rather
than large intermediate results, at the cost of data replication: tuples
are hashed to multiple workers, whereas the pipelined hash-join
approach sends each tuple to only one worker. For skewed datasets,
this replication has further gains, because “hot” vertices with high
degree are balanced across multiple workers.

Myria optimizes for the right combination of join techniques
given the input data statistics and the structure of the joins.

3.2.4 Failure Handling During Iteration

MyriaX provides intra-query failure handling: During query exe-
cution, without blocking the main data flow, each worker records the
data sent to downstream workers in an in-memory buffer, spilling to
disks if necessary. When a worker fails, the master starts a recovery
worker as the replacement. The live workers send the buffered out-
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Figure 5: A PSLA only shows improvements across tiers

going information to the new worker, and the new worker catches
up using these data directly.

Most modern engines provide this or other failure-handling meth-
ods during query execution. The novelty in Myria lies in our study of
failure-handling methods for iterative queries. Iterative applications
have special properties that we can exploit: First, data often includes
inherent structural redundancy. For instance, we can discover that
a vertex is reachable in the presence of data loss as long as any in-
coming edge from any reachable neighbor is known. Second, many
iterative computations incrementally build or refine their states and
outputs. Together, these factors facilitate state compression and
accelerate recomputation using more recent data when state is lost.
Myria exploits these properties when possible.

Depending on the iterative query, Myria uses different state buffer-
ing strategies: 1) Simple buffers (default): keep data in FIFO
queues. 2) Replacement buffers: In many iterative computations,
new messages overwrite or update old ones—stale labels in con-
nected components—so only updated results need be retained. 3)
Prioritized buffers: By ordering messages with a query-specific ob-
jective function, MyriaX can propagate “good” tuples (e.g., weights
of high-degree vertices in PageRank) earlier when recovering, lead-
ing to faster convergence.

3.2.5 What the user will see and do

The user will begin with a triangular query on a Twitter dataset
representing the following-followee relation. The user will choose
between two query plans for the query: (1) a traditional query plan
consisting of two pipelined distributed hash joins, and (2) Myria’s
novel query plan consisting of one HyperCube shuffle step and a
local multiway join step. Myria’s visualizer will serve to compare
and analyze the performance of the two query plans.

As a second step, the user will execute a connected-components
query over the Twitter dataset using either synchronous or asyn-
chronous iterative processing. The user will be invited to kill a
worker during the query execution and see how the system recovers
automatically under different fault-tolerance strategies. The focus
will be on the performance implications of each combination of
failure-handling and execution methods.

3.3 Mpyria as a Service

We aim to run Myria as a sustainable, publicly available resource
for big data analytics. This goal leads us to a research agenda
in cost-effective cluster management and better customer-provider
relationships, which we will demonstrate in the third phase.

3.3.1 Personalized Service Level Agreements

We have developed a new type of relationship between customers
and cloud service providers, the personalized service level agree-
ment (PSLA) [8] illustrated in Figure 5. The goal of a PSLA is
to switch from a resource-centric approach—in which users lease
CPU, memory, disk, or network resources—and instead focus on
allowing the user to think directly about query capabilities (in the
form of query templates) and performance versus service price.
Given a user’s data, our approach automatically generates sample

queries and a PSLA. The key challenge is to generate PSLAs that
are both concise (few tiers with few query templates) and precise
(time thresholds are close to expected query runtimes).

3.3.2  Elastic Scalability

Mpyria can scale its resource usage and performance as query
workloads change and to satisfy its customer PSLAs. First, Myria
can dynamically add or remove compute nodes—worker instances
that process queries, but do not store data. Compute nodes can
be added or removed from query processing even while queries
execute. Second, data in Myria can be partitioned across storage
nodes using consistent hashing [4]. This enables Myria to rebalance
storage workloads with minimal data transfer when storage nodes
are added or removed. Third, consistent hashing is also used for data
replication in Myria. Replicas provide resilience to storage node
loss and increase the system’s overall data parallelism by providing
concurrent reads and distributed writes. Our research focuses on
how best to leverage these techniques when operating Myria as a
service in a public cloud.

3.3.3  What the user will see and do

The user will start by exploring the N-body universe simulation
dataset. N-body simulations are widely used tools in astrophyics,
that help astronomers understand how gravity influences dark, star
and gas particles across time. The user will be able to select any
subset of tables from the dataset and change the table sizes (different
simulations produce different dataset sizes). She will then observe
how changing the input changes the generated PSLA. Finally, the
user will be able to execute queries at the different service tiers in
the PSLA and will compare the observed performance across these
tiers. As the queries execute, we will also demonstrate how Myria
can add and remove data and compute resources on the fly and how
doing so affects performance.

4. CONCLUSION

Our Myria service aims to improve productivity for data scien-
tists by accelerating the bottleneck steps in data management and
exploration, and to make these capabilities accessible to a new class
of users — self-serve analytics. This demonstration shows the three
key aspects of Myria: Myria’s interface to users, its system internals,
and its as-a-service features.
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