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ABSTRACT
In this paper, we present an overview of the Myria stack for
big data management and analytics that we developed in the
database group at the University of Washington and that
we have been operating as a cloud service aimed at domain
scientists around the UW campus. We highlight Myria’s key
design choices and innovations and report on our experience
with using Myria for various data science use-cases.

1. INTRODUCTION
The need to analyze large collections of data continues

to grow in industry, government, and sciences. Data anal-
ysis has even become recognized as the fourth paradigm
of science [38]. Users need tools to analyze this data effi-
ciently and easily. Many systems exist to support big data
management and analytics (e.g. [61, 69, 71, 46, 43, 3, 26]),
but much room remains for improvement in terms of perfor-
mance and usability. Beginning in 2012, the database group
at the University of Washington, in collaboration with the
UW eScience Institute, has built our own big data manage-
ment stack called Myria [52, 35]. We have been operating
Myria as a cloud service initially in our own physical clus-
ter and more recently in the public Amazon EC2 [1] cloud.
A demonstration version of the service is available on our
project website [52].

The Myria project has two main goals. The first is to
build an engine sufficiently mature, fast, and easy-to-use
to be adopted by domain scientists. The second goal is to
build a platform for testing novel database research ideas
motivated by our users’ needs. Rather than extend other big
data systems such as Hadoop [69], Spark [71], or SciDB [61],
we decided to build our own because we wanted the freedom
to decide on all components of the system’s design. We posit
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that we made the right design choices to obtain an efficient
and easy-to-use platform on which to build new ideas and
serve users.

At a high-level, Myria is a stack for federated data man-
agement and analytics with focus on both efficiency and us-
ability. Myria has its own shared-nothing and elastically
scalable query execution engine called MyriaX. It can also
generate query plans for other backend engines, including
Spark [71], SciDB [61], and PostgreSQL [59], and the plans
may cross engine boundaries. Users can express their anal-
ysis with a combination of MyriaL, a relational query lan-
guage with imperative extensions, and Python. Myria can
be operated as a service with cloud-specific features such
as elasticity and service-level agreements. Each Myria clus-
ter deployment includes a web-based interface for interactive
querying in MyriaL and a Jupyter [42] notebook server for
complex Python analysis.

We designed Myria to be a federated system at its core
because we find that scientists have access to many big data
systems such as Spark [71], SciDB [61], and others. Each
system best supports a specific type of workload. SciDB,
for example, is specialized for array processing while Myr-
iaX executes iterative queries efficiently. At the same time,
these systems often share the same cluster or public cloud.
With Myria, we seek to harness the power of these different
backend engines while freeing the user from manipulating
them separately. In Section 2, we present RACO, the Rela-
tional Algebra Compiler, which is Myria’s query optimizer
and federated executor.

Our primary target with Myria is relational data; We find
that the relational model, with several imperative exten-
sions, has served us well in expressing complex data analyt-
ics. We designed MyriaL, an imperative-declarative hybrid
language, to serve this purpose. Each MyriaL statement
is declarative but statements can be wrapped with impera-
tive constructs such as variable assignments and iterations.
However, we also find that scientists have large collections
of Python scripts for specialized algorithms. In order to
use these legacy libraries and also express complex, scien-
tific computations, we expose Python APIs for direct use of
Myria and include support for expressing user-defined func-
tions and aggregates in Python. We also provide support
for a blob data type, which enables query plans with Python
UDFs/UDAs to directly manipulate NumPy arrays or other
specialized data types without expensive conversions. Users
can write their data management and analysis using a com-
bination of MyriaL and Python as we describe in Section 3.



Myria’s query execution engine, MyriaX, builds on a tradi-
tional shared-nothing, parallel database system architecture
to inherit the high performance associated with pipelined
query execution, physical tuning, and the minimal query
start-up costs of a standing engine. We extend this archi-
tecture with important modern features including efficient
support for iterative processing, elasticity, ability to read
data from a variety of sources including HDFS [8] and cloud
storage such as Amazon S3 [4], deployment on top of novel
resource managers such as YARN [70], and a cloud service
orientation to minimize barriers to adoption. We present the
MyriaX engine and the details of Myria’s federated query
execution plans in Section 4.

An important aspect of Myria is its service-orientation. In
order to lower barriers to adoption, we developed Myria to
be a cloud service from the inception of the project. We have
used Myria to investigate important issues around cloud op-
eration including how to sell data management and analytics
systems as cloud services and how to leverage their elasticity
for cost-effective operation as we describe in Section 5.

Finally, we have used Myria to support different groups at
the University of Washington from a variety of domain sci-
ences including oceanography, astronomy, natural language
processing, and neuroscience. We describe these use-cases
in Section 6 and lessons learned in Section 7.

In this paper, we present the architecture of the Myria
stack, describe the known design choices and techniques
that Myria adopted, and highlight Myria’s innovative com-
ponents. The details of several Myria technical contribu-
tions have been published in separate papers, which we cite
throughout the text. The contribution of this paper is to
show how all the components come together, fill in miss-
ing pieces not published elsewhere, and report the lessons
learned from building the system and supporting users from
domain sciences.

2. RELATIONAL ALGEBRA COMPILER
(RACO)

Although the Myria stack includes a shared-nothing query
execution engine (MyriaX, see Section 4), the overall system
was designed as a federated data analytics engine for analyz-
ing data held by multiple backend systems, including those
with non-relational data models. As data systems continue
to become specialized, organizations are increasingly likely
to maintain a number of such systems in a common ecosys-
tem. Analysts and application programmers then must ei-
ther adapt their code for multiple backends or settle for a
lowest common denominator system. Our goal is to provide
a suite of common services, including query and optimiza-
tion, over these polystore environments that can deliver the
performance of specialized systems with the convenience of
general purpose systems.

The Relational Algebra Compiler (RACO) is Myria’s
query optimizer and federated query executor. RACO
adopts an extended relational algebra as the core model of
computation, but supports compilation of algebra expres-
sions into computations over selected array, graph, and key-
value engines. The hypothesis underlying the design is that
while performance characteristics vary widely across these
systems, relational algebra is sufficient to capture the se-
mantics of their query interfaces. For example, iterative
relational algebra is sufficient to express complex graph [19,

31] and machine learning algorithms [53]. Our approach is
to use rewrite rules to transform relational algebra expres-
sions into the specific API calls, operators, or query prim-
itives supported by the selected backend system, and use
rule-based optimization to generate a federated query plan
that takes advantage of the specialized features of multiple
backend systems. For example, a matrix multiply expressed
as a join followed by a group by can be rewritten into a call
to a specialized routine in a sparse linear algebra system.

In Section 2.1, we describe the extended algebra we use
as computational model. We then describe the optimization
and execution process in Section 2.2.

2.1 Extended Relational Algebra
The RACO computational model is the relational algebra

extended with iteration to enable multi-pass algorithms, a
flatmap operator to explode non-1NF values into multiple
tuples, and a stateful apply operator to express window func-
tions and array-oriented neighborhood operations. We first
describe these extensions, then describe how the optimiza-
tion process proceeds.

Iteration. Modern data analytics including graph an-
alytics and machine learning require iterative processing.
RACO supports two types of iterative processing constructs:
The first one is a general Do-While loop, which executes the
content of each loop and synchronizes at iteration bound-
ary to check the termination condition, which is a subquery
that returns a relation with one tuple and one boolean at-
tribute. The second one is a Do-UntilConvergence loop,
which enables asynchronous processing with several runtime
optimizations as we describe further in Section 4.2.2.

Stateful Apply. Window functions play a prominent
role in a number of applications such as running sums, rank-
ing functions, and sliding window operations on ordered
datasets. They are supported in most modern relational sys-
tems and are part of the SQL standard, but many are easier
to express in array-oriented systems. RACO expresses win-
dow functions with a generalization called Stateful Apply.
This operator acts as a user-defined aggregate but produces
a value for each input tuple instead of one tuple per group.
Like a user-defined aggregate, stateful apply requires three
function arguments: an initialization function, a step func-
tion, and an emitter function. RunningMean is a simple ex-
ample that executes by passing a (count, sum) state along
tuples, updating the state at each tuple, and emitting the
current state sum/count at each tuple:

apply RunningMean(value) {
[0 AS _count, 0 AS _sum]; -- init
[_count + 1, _sum + value]; -- step
_sum / _count; -- emit

};

Flatmap. Many use cases require a Flatmap operator, in-
cluding frequent itemsets, entity resolution, locality sensitive
hashing, and image analytics. The flatmap operator is used
in some big data systems to express a non-relational “reverse
aggregation” operation: exploding a single value into multi-
ple values. This operation is critical in practical contexts,
including generating ranges of integers, tokenizing a docu-
ment, splitting strings into n-grams, and splitting images
into image fragments.
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Figure 1: Myria’s polystore architecture with currently

supported backends.

2.2 Polystore Optimization
RACO uses rule-based optimization. Optimization pro-

ceeds by translating expressions in the logical Myria algebra
into expressions in a physical algebra in one or more of the
supported backends via a series of rewrite rules. We cur-
rently have hundreds of rules in the system for transforming
logical and physical plans. These rules are fired in a fixed
order until no more rules apply. Rule orders are specified
by each backend independently, though rules are frequently
shared across backends. Though our original design called
for cost-based optimization, we found that in most of our ap-
plications, optimization problems typically result from miss-
ing rules rather than inadvertent interactions between com-
peting rules.

The rule engine can produce federated execution plans
involving computation and data movement across multiple
backends, as shown in Figure 1. To register a new backend,
the developer needs to provide an AST describing the API
or query language supported by the backend, a set of rules
mapping the logical algebra into this AST, and a set of ad-
ministrative functions (e.g., querying the catalog, issuing a
query, extracting results).

RACO has a locality-aware algebra used to generate plans
for various parallel backends, including its own MyriaX en-
gine (see Section 4). The algebra uses Volcano-style par-
allelism [33], where data is partitioned and exchange oper-
ators such as Shuffle, Broadcast, and Collect are used to
communicate between partitions. RACO has optimization
rules to eliminate redundant communication operators and
take advantage of partitioning information in the catalogs
of backend systems.

RACO’s current, default federated optimization strategy
is simple: the optimizer assigns each leaf of the plan to the
platform on which the dataset resides. Then the optimizer
assigns the internal operators bottom-up. If the children of a
binary operator are assigned to different platforms, then the
optimizer inserts a data movement operator (see Section 4.3)
and the process continues.

As an example motivation for a more sophisticated fed-
erated optimizer, Figure 2 evaluates sparse matrix multi-
plication on three of Myria’s backends: Spark, MyriaX,
Radish [51], and on the CombBLAS sparse linear algebra
library [20]. We compute the square of three progressively
larger sparse matrices derived from real-world graphs: web-
Stanford, web-BerkStan, and soc-pokec [62]. The four sys-
tems have similar execution strategies except for data load-
ing: CombBLAS requires the data to be loaded into memory
before starting computation, whereas the other three sys-
tems pipeline data loading into computation, which makes
it difficult to separate data load time from the compute time.
Therefore, we add data load time to compute time for Comb-
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Figure 2: Time taken for matrix multiplication on three

Myria backends and CombBLAS. For MyriaX, Radish

and Spark, the graph plots “Pipelined IO + compute”

since data loading and execution in these systems are

pipelined. For CombBLAS, the time is the sum of data

loading and computation since it requires data to be

loaded into memory before staring computation. The

datasets are real-world web graphs [62].

BLAS for a fair comparison. As the figure shows, MyriaX
runs fastest on the web-Stanford dataset, Radish runs fastest
on web-BerkStan, but both MyriaX and Radish run out of
memory when processing soc-poksec, which CombBLAS ex-
ecutes fastest. The best performing system thus depends on
the data scale, motivating in part a federated optimizer that
chooses between multiple execution backends.

RACO uses the relational data model for translation and
optimization. We support non-relational systems by defin-
ing relational semantics for their operations and adding rules
to translate them properly. The basis of our “relational
at the core” approach lies in the hypothesis that the four
pervasive data models —relations, arrays, graphs, and key-
values— are fundamentally isomorphic, in the sense that a
computation in any one can be expressed against any of the
others. Therefore, it suffices to map arrays, graphs, and
key-value based systems into relational algebra in order to
connect these systems together through RACO.

As a concrete example, one way to express a matrix multi-
ply operation is as a join followed by a group by. The RACO
module for the SciDB [61] backend includes a rule that recog-
nizes this pattern and compiles it into a matrix multiply call.
Similarly, we include rules to translate graph primitives (e.g.,
a graph traversal expressed with a while loop can be recog-
nized and compiled into a property path query in SPARQL).
The success of this approach is surprising: we do not expect
every API call of each backend to be expressible in relational
algebra, but the limitations of this approach have not been
the bottleneck in adoption. Since we began the project,
we have seen other federated systems adopt a relational ap-
proach to multi-model processing, including Metanautix’s
Quest (since acquired by Microsoft and no longer available),
Musketeer [31], Presto [9], and SQL++ [56] (as used in the
FORWARD system [30]).



3. QUERY INTERFACE
In Myria, users express their data management and analy-

sis using our declarative-imperative language called MyriaL.
Myria further provides support for Python. It has both a
rich Python API and support for Python user-defined func-
tions and aggregates. We included extensive support for
Python because it is today’s language of choice for data sci-
entists. We describe both aspects of Myria’s query interface
in this section.

3.1 MyriaL Query Language
MyriaL is a hybrid imperative-declarative query language

designed for programming relational algorithms ranging
from simple queries to matrix operations to iterative ma-
chine learning tasks. MyriaL was designed to balance ex-
pressiveness with optimizability. MyriaL is perhaps most
similar to stored procedure languages such as PL/SQL, ex-
cept that no DDL statements are allowed, the only control
flow statements allowed are while loops, and all variables
hold relations. Even scalars are treated as relations inter-
nally. These limitations allow each MyriaL program to be
represented as a forest of expressions, simplifying rewriting
for optimization.

A MyriaL program consists of a sequence of assignment
statements interleaved with one or more loop blocks such
as do . . . while. Loops may not be nested. The left-hand
side of each assignment statement is a relation variable and
the right-hand side is a relational algebra expression written
in one of three syntaxes: SQL, comprehensions (expressions
of the form [from X where Y emit Z], or function calls. This
flexibility has been useful; we have found users expressing
different tasks in different syntaxes within the same pro-
gram, as in Figure 3.

We originally envisioned a Datalog-based language but
found ourselves writing queries on the whiteboard in an im-
perative style with loops, and so we decided to implement
that language instead. In particular, tasks that involve a
fixed number of iterations or iterating until a convergence
condition were awkward (although not impossible) to ex-
press in Datalog assuming typical extensions, but such tasks
were straightforward with a while loop. Figure 3 shows an
iterative example of calculating connected components in
MyriaL. Line 1 loads a graph dataset in an edge table rep-
resentation. Line 2 derives the unique nodes. Line 3 ini-
tializes the component IDs. Lines 4-11 iteratively assign to
each node the minimum component ID among all its neigh-
bors. Line 12 computes the size of each component. Line
13 persists the counts. Through interactions with users, we
have written a variety of machine learning and data mining
tasks in MyriaL using our iterative construct, including k-
means, frequent itemset mining, logistic regression, CART,
PageRank, betweenness centrality, Markov clustering, näıve
Bayes, LDA, and others.

Myria supports both user-defined functions (UDFs) and
user-defined aggregates (UDAs), which users write either
in MyriaL as shown in the Stateful Apply example in Sec-
tion 2.1 or Python as we describe further in the next section.
Users can also define SQL UDFs to be pushed down to the
relational storage layer used by the MyriaX query execution
engine. We describe MyriaX in Section 4.

1 E = scan(Graph); -- Graph(x, y) is an edge table
2 V = select distinct x from E;
3 CC = [from V emit x as node_id, x as comp_id];
4 do
5 newCC = CC + [from E, CC where E.x = CC.node_id
6 emit E.y, CC.comp_id];
7 newCC = [from newCC emit
8 newCC.node_id, min(new_CC.comp_id) as comp_id];
9 delta = diff(CC, newCC);

10 CC = newCC;
11 while [from delta emit count(*) > 0];
12 components = [from CC emit CC.comp_id, count(CC.node_id)];
13 store(components, ConnectedComponents);

Figure 3: Connected components in MyriaL.

3.2 Python Integration
Because data scientists today favor Python as their pri-

mary programming language, Myria offers extensive support
for Python in two ways: Support for Python UDFs/UDAs
and a Python API.

Python UDFs and UDAs: In Myria, users can register
Python functions that they can later use in MyriaL queries
as illustrated in Figure 4. Python functions are currently
only supported with the MyriaX query execution engine.
MyriaX includes a blob data type so that Python UDFs
and UDAs can operate on Python objects (e.g., NumPy ar-
rays) directly. Analogous to Spark [63] and Hadoop Stream-
ing [34], to execute user-specified Python code, MyriaX
launches Python subprocesses and communicates with them
using pipes to send the user’s code and the data to be
processed. MyriaX serializes Python code using PiCloud’s
cloudpickle [23] library to ship it to Python worker processes
and serializes data using the Python cPickle [25] serializer
because it is reasonably fast and supports nearly any Python
data structure. MyriaX executes Python UDAs in one of two
ways: It either passes one tuple at a time to the function and
receives the updated state or it accumulates and passes all
tuples in one invocation. We find that the latter approach
can improve performance by 1.5× to 5×, especially when
the state is sizable such as with a large NumPy array. Since
Python UDFs and UDAs can utilize any existing Python
libraries, we are able to implement many use-cases without
rewriting complex calculations in MyriaL: an effort which
would otherwise be error prone and expensive.

Python API. In addition to supporting queries in Myr-
iaL, we also expose a fluent API for direct use in Python and
Jupyter notebooks. This API is similar to the one exposed
by PySpark [10], and enables query composition through
successive invocations of functions on relation objects. An
example of this is illustrated on lines 7-12 of Figure 4. The
fluent API exposes functions for standard relational opera-
tions (e.g., projections, joins, and aggregations), loading and
ingesting data (both local and remote), and user-defined op-
erations. The API accepts native Python functions passed as
arguments, a.k.a. lambdas, for its various operations (e.g.,
selection predicates). At runtime, the Python lambda trans-
lator (PLT) converts each embedded Python lambda into an
equivalent expression in the RACO extended relational alge-
bra. The PLT then inserts the resulting RACO expressions
into a query plan constructed from the chained API invo-
cations. Finally, the PLT submits the plan to RACO for
optimization and execution.



1 @myria_function(name=’denoise’,
2 output_type=BINARY)
3 def apply_denoise(image, mask):
4 sigma = estimate_sigma(image)
5 return nlmeans.nlmeans(image, sigma, mask)
6
7 print MyriaRelation("images")
8 .where(lambda t: t.height > 1080)
9 .where(lambda t: t.date > datetime.now())

10 .denoise()
11 .store("denoised-images")
12 .to_dataframe()

Figure 4: Examples of a Python user-defined function

and the Myria fluent API. This example may be executed

both as an ordinary Python program or in a Jupyter

notebook.

The PLT is only able to directly translate a subset of
the possible Python expressions into RACO equivalents.
For example, the selection predicate on line 8 of Figure 4
has a RACO equivalent, while predicate on line 9 does not
since RACO exposes no construct that represents the cur-
rent time. However, for expressions with no RACO equiv-
alent, indirect translation is possible through the use of an
implicit Python UDF. Accordingly, when a lambda that can-
not be directly transformed into a RACO expression is en-
countered, the PLT instead registers the lambda body as a
Python UDF and generates a RACO-compatible invocation
of it. This allows Myria to utilize higher-performing RACO-
translated expressions where possible, and fall back to more
robust Python UDFs for unsupported cases.

Our Python integration also allows for more complex logic
to be encapsulated in extension methods [17]. Myria exten-
sion methods transparently handle the process of UDF regis-
tration and invocation during query plan construction. For
example, lines 1-5 of Figure 4 show an annotated method
that may be invoked through the API. We show an example
of its invocation on line 10. This approach allows users to
more easily build and share complex libraries built on Myria.

3.3 Updates
In Myria, all datasets are immutable. A query can read

datasets from internal storage or an external source, as we
describe in Section 4, and produce one or more immutable
relations as output. A second execution of the same query
overwrites any results. We find this simple design adequate
and have not encountered a use-case where a data scientist
needs to update individual tuples. For base relations that
grow over time, we append new data to an existing relation
via a union operator.

4. QUERY EXECUTION
In this section, we present Myria’s query execution engine

MyriaX. We also give details of efficient data movement dur-
ing federated query plan execution.

MyriaX is a parallel, shared-nothing relational query ex-
ecution engine. Its design uses both state-of-the-art ap-
proaches and new techniques. Figure 5 shows the overall ar-
chitecture of the MyriaX parallel query execution engine to-
gether with cluster deployment details. As the figure shows,
MyriaX comprises a coordinator and multiple workers. The
coordinator and each of the workers are separate MyriaX
processes. Each executes in its own YARN container.

Amazon	EC2	Instance	

JSON	query	plans	&	API	calls	

Coordinator	
REST Interface 

Worker	

HDFS	
Amazon	EBS	Volumes	and/or	Local	Storage	

RDBMS	

Amazon	S3	

Worker	

YARN	Container	

Worker	

YARN	Container	

YARN	Container	

… …

YARN	Container	

Amazon	EC2	Instance	

RDBMS	 RDBMS	

Amazon	EC2	Instance	

… …

Figure 5: MyriaX architecture with deployment details

using YARN on the Amazon cloud. The coordinator can

schedule multiple workers on the same physical or virtual

machine.

4.1 MyriaX Data Storage
MyriaX workers can read data from a variety of sources

including their local file system, Amazon S3, and HDFS.
The read of a single file can be automatically parallelized in
the case of Amazon S3, or Myria can also assign workers to
read from specific files in parallel if a dataset is partitioned
across files. The system provides support for reading and
parsing CSV, TSV, and a simple binary format. MyriaX
also supports data ingest in several domain-specific formats
such as TIPSY and NChilada [55] for astronomy simulation
data. Users can also write new FileScan operators to support
new file formats.

When workers store query results, however, they use rela-
tional DBMS instances for efficient, node-local storage with
indexing. Subsequent queries can then read the data dis-
tributed across these instances. Myria can be configured
to use any relational DBMS, including column-store sys-
tems [39]. In our default deployments, we choose Post-
greSQL [59] because it is open source and we also found
it to be consistently efficient.

The above design ensures both ease-of-use and high per-
formance. By reading data from commonly used data stor-
age systems such as HDFS and Amazon S3, Myria makes it
easy for users to point the system at their data. By storing
intermediate results in RDBMS instances, Myria leverages
their performance and indexing capabilities.

Our approach also facilitates physical tuning by enabling
users to specify how they want their data to be partitioned
across the cluster and what indexes to add at the local
DBMS level. As of now, users are responsible for physical
tuning. For example, in the MyriaL script below, the store
command hash-partitions the data on a single attribute, x:

T = load("https://uwdb.s3.amazonaws.com/.../points.csv",
csv(schema(x:float,y:float)));

store(T, points, [x]);

4.2 MyriaX Query Execution
MyriaX takes as input query plans generated by optimiz-

ers such as RACO (Section 2). Query plans take the form
of graphs of operators. Graphs can have cycles when itera-
tive processing, as described in 4.2.2, is involved. Operators
are grouped into query fragments. Each query fragment
runs in a separate thread on a worker. The set of MyriaX
operators includes both relational operators (e.g., joins and
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aggregates) and specialized operators that we present in this
section. Query plans are fully pipelined using Volcano-style
exchange operators [33] such as Shuffle and Collect. These
operators mark query fragment boundaries. Queries that do
not require any data shuffling run inside a single fragment at
each worker. Query plans are thus pull-based within query
fragments and push-based across fragments as in traditional
parallel database systems. Each operator consumes and pro-
duces batches of tuples in the form of objects of a specialized
TupleBatch type. The data inside these objects is organized
following the PAX format [13]: Each batch is a horizontal
data partition. Inside the batch, data is stored using an
in-memory columnar representation.

4.2.1 HyperCube Parallel Joins
An important contribution in Myria is our support for

queries that join multiple large relations. Unlike traditional
star-schema queries where a large fact table must be joined
with one or more small dimension tables, new data analytics
workloads often require joining two or more large tables with
cycles. For example, to compute triangles in a large graph
represented by an edge relation, one needs to join the edge
relation with itself two times as opposed to joining it with
some smaller, dimension tables. For this type of query, the
traditional approach, which shuffles intermediate results or
replicates input tables, is expensive.

Myria has efficient algorithms, based upon solid theoreti-
cal foundations for such challenging queries. More precisely,
we leverage the Shares [12] or HyperCube [16] data distribu-
tion algorithm and a new single-node multiway join operator
called Leapfrog Triejoin [66]. We implement the HyperCube
algorithm in a new operator that we call HyperCube Shuf-
fle and a multiway join operator based on Leapfrog Triejoin
that we call Tributary Join. Our contribution in Myria is
twofold: We implement and empirically evaluate HyperCube
Shuffle and Tributary Join, and we further develop impor-
tant optimizations to build efficient hypercubes for arbitrary
numbers of servers and select the variable order in Tributary
Join. More details about this approach and these optimiza-
tions are in our paper [22].

The query that generates all the triangles from a graph
represented with an Edge(x, y) relation exemplifies the
performance of our approach:

select A.y, B.y, C.y
from Edge as A, Edge as B, Edge as C
where A.y = B.x and B.y = C.x and C.y = A.x;

E = scan(Graph); -- Graph(x, y) is an edge table
V = select distinct E.node_id from E;
do
CC := [node_id, MIN(comp_id)] <-
[from V emit V.node_id, V.node_id as comp_id] +
[from E, CC where E.x = CC.node_id emit E.y, CC.comp_id];

until convergence;
store(CC, ConnectedComponents);

Figure 7: Connected components in MyriaL using opti-

mized iterations.

Figure 6 shows query run times for the above triangle
query on Myria and Spark using Spark SQL. The graph is
a subset of the Twitter dataset [44] containing 4.5 million
edges and 166 thousand vertices. The result has 89 mil-
lion triangles, and they are materialized in memory then
dropped. We run all experiments in a 16-node shared-
nothing cluster interconnected by 10 Gbps Ethernet. Each
machine has four Intel Xeon CPU E5-2430L 2.00GHz pro-
cessors with 6 cores, 64GB DDR3 RAM and four 7200rpm
hard drives. We deploy both systems on top of YARN [70]
and vary the cluster size from 8 to 64 YARN containers, each
with a memory limit of 14 Gigabytes. To make both systems
start with the same number of partitions, we modify the size
of HDFS blocks to control the number of blocks of the input
dataset for Spark. Each point represents the average time
of five trials. The evaluation shows that Myria’s Tributary
Join and HyperCube Shuffle combination dramatically out-
performs the traditional plan with two binary joins, mean-
while Myria also outperforms Spark even with a traditional
plan. While it is possible to develop specialized solutions to
efficiently answer particular queries, such as triangle count-
ing in a graph, our approach is generally applicable.

4.2.2 Iterative Processing
Modern data analytics requires iterations (e.g., graph an-

alytics, machine learning, specialized scientific computa-
tions). For this reason, we have developed a new technique
for iterative processing in Myria. Our approach, described
in detail in a separate paper [67], takes as input an impor-
tant sub-class of declarative recursive queries with aggre-
gation and compiles them into efficient parallel query plans
that can be executed either synchronously or asynchronously
and with different processing priorities for intermediate and
input tuples. With this approach, MyriaX is one of few en-
gines to provide simultaneously data management capabili-
ties with declarative iterative queries, and the above types of
optimizations. Most other systems lack at least one of these
three features as we describe in detail in our paper [67].

Our key design choice is to introduce a new physical op-
erator that we call IDBController. Each IDBController ac-
cumulates and aggregates the state of one recursively com-
puted relation and manages query execution synchrony. A
query plan can have multiple IDBControllers. The rest of
the query plan comprises only select, project, and join oper-
ators, which incrementally generate new facts to be aggre-
gated by the IDBControllers. An important contribution of
our work is to show that runtime optimizations, which in-
volve selecting between synchronous and asynchronous exe-
cution as well as choosing good evaluation priority, are crit-
ical to achieving high performance. More details about this
can also be found in our paper [67].
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(GraphX).

Initially, we developed the approach based on Datalog. To
make adoption easier, however, we decided to enable users to
specify queries declaratively using the more SQL-like MyriaL
syntax. Instead of extending MyriaL’s existing Do-While
loop, however, we developed a new Do-UntilConvergence
syntax to make explicit the types of recursive queries with
aggregation that our optimized execution supports. Fig-
ure 7 shows the connected components example using the
new syntax. Other iterative queries can use the more gen-
eral syntax as in Figure 3 but are executed using a simple,
synchronous approach.

Figure 8 shows query run times of connected components
on Myria and Spark. We use the same experiment settings
as in Section 4.2.1, with a subgraph containing 221 million
edges and 5 million vertices. For Spark, we use GraphX’s
connected components implementation. The result shows
that Myria’s asynchronous evaluation approach boosts query
performance compared with synchronous execution for this
application. Myria’s synchronous evaluation performance is
similar to Spark/GraphX’s.

4.3 Federated Execution and Data Movement
A central issue with federated data analytics is data move-

ment between constituent query engines during query exe-
cution. If a query spans an engine boundary, intermediate
query results must move across systems. One approach is
to export the data into a CSV file and store it in HDFS,
since most big data systems are able to import using this
format. This approach, however, yields high data transfer
costs. Another approach is to write new operators for each
pair of systems that must be interconnected. This approach,
however, does not scale to large numbers of systems. Even
if these new transfer operators leverage an existing frame-
work (e.g., Apache Flume[2]), integration still requires man-
ual modifications to the involved DBMSs.

To better support federated data analytics between Myr-
iaX and other systems, we developed a tool called PipeGen,
described in detail in a separate paper [36], that automati-
cally enables optimized data transfer between arbitrary pairs
of database systems. PipeGen leverages the existing ability
of a DBMS to import and export delimiter-separated data
to and from the file system, and replaces that functional-
ity with a highly-optimized version that transmits Apache
Arrow [15] ArrowBufs over a network socket, in parallel
when possible. Our experiments show that PipeGen consis-
tently delivers speedups of up to 3.8× between DBMSs such
as MyriaX, Spark, and Hadoop when compared to transfer
routed through the file system.

Figure 9: Web interface to Myria service.

To execute a federated query plan, a user or the RACO
optimizer issues independent queries to each of several back-
end query execution engines extended with PipeGen. To
transfer data between systems, each query includes a call to
export data to or import data from a specially designated
filename. The PipeGen-added code then manages the cross-
system connection and data movement.

5. CLOUD OPERATION
One key decision that we made early on in the project is

to offer Myria as a service rather than having users manage
their own Myria clusters. As a result, we developed a pow-
erful web interface for interacting with the service. Figure 9
shows a screenshot. The interface enables users to write
MyriaL scripts directly in the browser, view datasets, logs
of past queries, and query evaluation details. Evaluation de-
tails are produced by our Perfopticon [50] tool, an interac-
tive query profiling tool that provides visualizations of query
plans, overall query execution, data flow among servers, and
execution traces. Myria’s web interface also provides ac-
cess to a Jupyter notebook, enabling users to write Python
scripts, which we find to be the preferred mode of interac-
tion for our users with the Myria service. Figure 4 shows an
example analysis with Myria from a Jupyter notebook. The
example also leverages Python user-defined functions.

For a long time, we operated a 76-worker service in our lo-
cal cluster. We recently decommissioned the cluster and now
run a small public Myria deployment on Amazon EC2 [52].
For users who wish to analyze larger datasets, we provide
a simple script to allow deployment of larger, customizable
Myria clusters in the Amazon cloud.

5.1 Resource Management and Elasticity
MyriaX runs on top of REEF [60], which is a library

that facilitates the development of applications, including
long-running services, on top of resource managers such as
YARN [70]. Figure 5 illustrates MyriaX’s cluster deploy-
ment. When a MyriaX cluster launches, the MyriaX coor-
dinator runs in the REEF driver and workers run in REEF
evaluators. Multiple MyriaX workers can execute on the
same physical or virtual machine. Workers are persistent
and wait to receive query plans from the coordinator. They
can execute one or more queries simultaneously. This ar-
chitecture enables MyriaX to share a cluster with other big
data systems, provide negligible start-up overheads for short
queries, and at the same time support isolation for long-
running queries by spinning up new workers when needed.



The current version of the system requires that new work-
ers be added by manually executing a command; however,
support for automatically spinning up new workers is part
of our design.

Given a cluster configuration, the MyriaX coordinator can
schedule a query on any subset of available workers. The
only current constraint is that each worker holding a par-
tition of a base relation must execute a query fragment to
scan that relation. Subsequent operations in the query plan
can be scheduled on any subset of available workers by spec-
ifying parameters in the query plan. If not specified, all the
available workers are used if possible (fewer workers are used
for certain operators such as group-by aggregates).

In addition to MyriaX cluster elasticity, we also study
memory elasticity. The idea is to free the user (or sys-
tem) from deciding on the memory limits associated with
MyriaX worker containers. Instead, as multiple queries ex-
ecute in multiple containers on the same physical machine,
a global scheduler dynamically changes their memory allo-
cations. The goal is to eliminate the need to set memory
bounds before query execution, avoid out-of-memory fail-
ures when possible, and reduce garbage collection overheads.
More details are available in a separate paper [68].

5.2 Selling Performance
In Myria, we argue that selling resources (i.e., number

of instances) is the wrong abstraction for cloud data man-
agement services because it requires users to have the ex-
pertise to determine the resource configuration that they
should use. Such an expertise requirement limits the extent
of users leveraging a cloud DBMS service to manage and
analyze data cost-effectively.

One approach to addressing this problem is to show the
performance of a cloud service on existing benchmarks [29].
Although this technique can help demonstrate the perfor-
mance of a cloud service, users need to extrapolate this in-
formation to their own datasets. Other prior work in this
area requires users to input a predefined query workload [21]
or job profiles [40, 37] to the system in order to obtain a good
configuration for the specific workload.

In our approach, we assume users do not necessarily have
a workload when they first come to a cloud service. In-
stead of asking the user for performance requirements on a
specific workload, we focus on telling the user what is possi-
ble with their data and let them pick among those options.
Our approach only requires users to upload their schema
and statistics over their data. The cloud service then gener-
ates a personalized service-level agreement (PSLA) that of-
fers guaranteed performance levels for queries over the user’s
data at a fixed rate. Rates correspond to cluster sizes but
the correspondence is hidden from the user. We developed
a technique to generate PSLAs [57] and implemented the
approach in a new PSLAManager system. We present the
details of this approach in a separate paper [57].

A fundamental challenge with performance-centric SLAs
lies in cost-effectively guaranteeing the performance that the
user purchases. To address this challenge, we also developed
a second system, PerfEnforce (described in a recent demon-
stration paper [58]), which scales a cluster of virtual ma-
chines allocated to a user in a way that minimizes cost to
the cloud provider while probabilistically meeting the query
runtime guarantees offered by a PSLA.

We recently integrated both systems with Myria and our
users will soon be able to use both tools when launching
Myria clusters. We refer readers to the PSLAManager [57]
and PerfEnforce [58] papers for details.

6. USE-CASES
Myria in Oceanography: Our first users were members

of the UW Armbrust lab who extensively used Myria to an-
alyze large-scale environmental flow cytometry data. A flow
cytometer advances ocean water through a capillary illumi-
nated by light of different wavelengths; the absorption and
refraction patterns can be used to classify the species of in-
dividual microbial organisms in the environment. With mil-
lions of particles flowing through the system every minute,
a multi-week cruise can generate terabytes of data, and the
vision is to have hundreds of devices on hundreds of vessels.
Since very little is known about the exact population profiles
of microbial communities in the open ocean, the analysis is
primarily exploratory. Myria was used to clean and cali-
brate the data, experiment with classification algorithms,
and compute abundance and richness metrics over time. The
RA-based programming model was (somewhat surprisingly)
sufficient for the entire analysis.

More recently, we worked with the MIT Chisholm Lab
whose members study ocean microbial life by analyzing ter-
abytes of dense genomic sequences alongside sparse environ-
mental data collected from ocean expeditions. We used the
Myria system to explore and analyze data from two expe-
ditions in partnership with the Intel Science and Technol-
ogy Center for Big Data. These analyses included sliding
window k-mer extraction, matrix multiplications with over-
loaded ⊕ and ⊗, and a variety of ad-hoc rollup and sense-
making queries.

Myria in Astronomy: We successfully used Myria
in support of multiple applications in astronomy. The
first application was concerned with the analysis of results
from large-scale cosmological simulations, which can pro-
duce from a few to hundreds of terabytes of data [64]. In
the simulations, the universe takes the form of particles in
3D space. The simulation output is the position and state
of these particles at different points in time. We used Myria
to enable astronomy collaborators from the UW N-Body
shop [54] to analyze and compare galactic merger trees (i.e.,
how galaxies evolved from the mergers of earlier galaxies).
To facilitate the analysis, we built a specialized, graphical
application on top of Myria [45]. The core analysis involved
joining and aggregating data across time steps in an itera-
tive fashion to rebuild galaxy history starting from present
day galaxies. The second astronomy application used Myria
to analyze catalog data from sky surveys. It implemented
Gaussian mixture models to classify point sources listed in
the catalogs [48]. This use-case also leveraged iterative pro-
cessing with two user-defined operators in the inside of the
loop, corresponding to the E and M steps of the expectation
maximization algorithm. The final application used Myria
to analyze astronomy sky survey images themselves [49]
The implemented analysis executed an abridged version of
the LSST image processing pipeline [47] with the goal of
enabling individual researchers to easily execute and mod-
ify that pipeline. This application heavily utilized Myria’s
Python UDFs and UDAs.



Myria in Natural Language Processing (NLP): The
Google syntactic n-grams dataset [32], released in 2013, is
an important resource in NLP research. This dataset con-
tains billions of parsed sentence snippets, each a few words
in length. The words in each snippet are annotated with
their part-of-speech and their dependency relation to the
root of the parsed snippet. Our UW NLP collaborators built
a service on top of Myria to query this dataset efficiently.
The queries in the service were heavy on joins and leveraged
Myria’s physical tuning (partitioning and indexing) capabil-
ities to achieve high performance. This use-case also lever-
aged Myria’s PostgreSQL storage layer with its string tok-
enization functions to parse the original data and store it in
a structured format.

Myria in Neuroscience: Many sub-fields of neu-
roscience use image data to make inferences about the
brain [41]. Our neuroscience collaborators from the UW
eScience Institute used Myria to analyze diffusion MRI data
of human brains at scale. The data came from the Human
Connectome Project [28]. To implement the analysis, we
worked with them to port their Python pipelines to Myria.
We expressed the overall pipeline structure and data selec-
tion, partitioning, and grouping in MyriaL. We implemented
the core image processing operations as Python UDFs and
UDAs to reuse all core image analytics routines without
reimplementing them. We also leveraged Myria’s blob data
type to store image data fragments directly as NumPy ar-
rays and avoid data conversions. We showed that Myria’s
implementation of this use-case compared in performance to
Spark and Dask [49].

7. LESSONS LEARNED
We draw several lessons from observing domain scientists

working with Myria:
Usability: The need for lowering barriers to adoption

and maximizing usability cannot be overstated. Users want
a Myria service that is available, easy-to-use, and reliable
with less effort on their behalf. These needs trump the need
for high performance. Overall, we find that a continuously
running cloud service does lower barriers to adoption com-
pared with asking users to spin up and operate their own
clusters. However, users also require access to examples of
how to get started with processing their data (or enough
examples with different types of data) and examples of ana-
lytics that resonate with their own needs. We were most suc-
cessful in recruiting users when we could demonstrate some
type of analysis that the researchers needed to perform ex-
ecuted in Myria on their data. Once users get started with
the system, informative error messages are most critical, in-
cluding messages related to system errors such as running
out-of-memory on a query. If something goes wrong, the sys-
tem must produce clear instructions for what the user should
do in order to address the problem. Finally, effective user
isolation is important to ensuring predictable performance
and a consistent experience with the service.

We also found that building specialized vertical services
on top of Myria, such as our MyMergerTree service for the
visualization of galaxy evolutions, can further drive adoption
by hiding all interactions with the system behind a graph-
ical interface. The challenge, however, lies in finding ways
for expert users, as opposed to systems builders, to develop
such services and in facilitating their maintenance as the
underlying data management system evolves.

Domain-Specific File Formats: Every scientific use-
case starts with data in a new, domain-specific file format
(TIPSY, NChilada [55], FASTQ [24], etc.). The ability to
painlessly add parsers for them is paramount. Users typi-
cally already have parsers for their data in Python. They
need easy ways to integrate these parsers with the system.

Analytics Pipeline Features: We find that the re-
lational model and relational algebra are a good founda-
tion even for complex analytics. However, relational alge-
bra must be extended with iterative processing, flatmap,
and stateful apply operations as we describe in Section 2.1.
We find that all three features are critical in supporting the
above use-cases: galaxy evolution requires recursively find-
ing ancestor galaxies, GMMs require iteratively updating
the models, genomic sequence data requires flatmaps to ex-
tract k-mers from the sequences, image analytics (in both
neuroscience and astronomy) also requires flatmap to par-
tition images into pixel blocks for parallel processing, and
stateful apply is frequently used for assigning IDs to records.

User-Defined Functions and Aggregates: Relational
algebra extended with the above three constructs took us far
in terms of expressing complex scientific analytics, but sci-
entists already have large collections of Python scripts with
carefully debugged operations, such as in the neuroscience
and astronomy image analytics use-cases. They also wish to
interleave declarative querying with specialized algorithms
written in Python (e.g., specialized spatial clustering prim-
itives or image denoising). Support for Python UDFs and
UDAs has been critical in enabling the quick implementation
of scientific analysis and increasing user enthusiasm. Myria
is written in Java (and not Python) and providing good sup-
port for UDFs/UDAs in a language other than the system’s
language comes with some challenges: One challenge is mov-
ing data to and from the user-defined operations, including
incurring data translation overheads. In Myria, one way we
reduce this overhead is by supporting blob data types and
thereby avoiding the need for translation; however, these
blob data types are then opaque to the rest of the system.
Other challenges include propagating error messages from
Python functions back to users and allocating resources be-
tween the functions and the rest of the query plan when the
Python UDFs/UDAs execute in separate processes.

Data Types: While a relational system is a strong foun-
dation for scientific analytics, scientists have large amounts
of text and multimedia data (images and videos). A big data
system must have the ability to process different data types
simultaneously. In Myria, we find that Python UDFs/U-
DAs together with blob data types can yield both ease-of-use
and acceptable performance. However, this approach leaves
room for optimization. Specialized systems such as SciDB,
which focuses on multidimensional array processing, are not
always a better solution, though. They require the reimple-
mentation of entire analytics pipelines and sacrifice support
for other data types that are not their design focus. Sci-
entists need a system that helps them easily and efficiently
process many different data types at the same time.

Autonomic: All the above use-cases required some type
of tuning to achieve high performance: workload-driven data
partitioning, indexing, and varying the degree of parallelism
in the cluster. Users, however, do not tune for performance.
Users execute data analysis scripts. If a script fails, for ex-
ample due to an out-of-memory error, they will take the
necessary actions to get their script to run. If the script



executes, however, they will most often not try to improve
performance through tuning. As a result, the system perfor-
mance that matters the most is the performance obtained
out-of-the-box.

User Retention: We find that user retention is not triv-
ial. The groups of scientists that we worked with would suc-
cessfully leverage Myria for specific projects but would not
adopt it across all their projects. Part of the reason is that
scientists today still do not automatically turn to database
systems when they start to work with new datasets or on
new problems. Another issue is with the constant service
availability. When we operated the service in our physi-
cal cluster, we could run it continuously at good scale (76
workers across 20 physical machines including a coordina-
tor). This helped with user retention in the sense that the
service was there and available whenever they decided to
use it. The local, physical cluster, however, had too much
contention between users as the system’s popularity grew.
It was also tedious for our team to operate due to con-
stant hard disk failures. In the cloud, we operate only a
small cluster on a continuous basis due to costs. While we
technically could launch clusters automatically for users and
charge their Amazon credentials, we shied away from doing
so due to the responsibility associated with manipulating
user credentials. Instead, our approach is to maximally sim-
plify and automate the process of launching Myria clusters
in the cloud, including offering features such as the PSLA-
Manager, as part of our start-up scripts.

8. RELATED WORK
Many big data systems have emerged in recent years. In

this section, we contrast Myria with some of the key systems
representative of different points in the overall design space.

Several systems, such as Spark [71], Flink [5], and
Hadoop [69], are designed to be general-purpose big data
systems, while several others, such as SciDB [61] and
GraphLab [46], are designed to serve specific types of work-
loads. Myria is a general-purpose engine. Similar to the
other general-purpose systems, it focuses on making big data
analytics both fast and easy for a broad range of applica-
tions. In particular, Myria’s rich support for Python builds
on the above systems’ support for that same language. Un-
like the above systems, however, Myria has more advanced
federation capabilities and MyriaX is foremost a relational
engine: it uses relational, node-local data stores internally
(i.e., PostgreSQL instances), leverages long-running work-
ers, and pipelined query execution (which several [69, 71] but
not all [5] the above big data systems lack). It also differs
in other design choices including its support for declarative
queries compiled into synchronous and asynchronous itera-
tive query plans, and multiway joins. These design choices
contribute to Myria’s performance.

Many systems target relational queries on shared-nothing
architectures. HadoopDB [11] combines local RDBMSs for
query evaluation with Hadoop for communication. While
MyriaX has the ability to push some of the computation
down to local RDBMSs before reading data out, it uses these
RDBMSs mainly for storage. It provides its own query ex-
ecution layer and data shuffling primitives. For Massively
Parallel Processing (MPP) databases, Greenplum [7] builds
on top of local PostgreSQL instances with its own parallel
processing layer similar to Myria, while Teradata [65] has a
similar architecture built on top of its own local data man-

agement units called Access Module Processors (AMPs).
Asterix [14] exploits Log-Structured Merge (LSM) trees for
internal storage and indexing with its own runtime execu-
tion layer Hyracks [18]. Impala [43] reads data from HDFS
and Amazon S3 instead of local RDBMS instances, while
Myria can utilize RDBMS features such as indexing for bet-
ter performance. Compared with all these relational sys-
tems, Myria includes novel iterative processing and multi-
way join algorithms together with cloud-specific features.
Myria also supports powerful polystore processing capabili-
ties, where queries can be executed by one or more big data
systems sharing the same cluster.

Myria is part of the recently introduced BigDAWG
stack [27]. Unlike BigDAWG, Myria hides the data model
differences between the federated backends. Gog et al. pro-
posed Musketeer [31], a federated system unifying graph and
relational systems with relational algebra as a common pro-
gramming model. However, no support for array-based or
matrix-oriented systems is described.

Similar to Myria, Snowflake [26] is a recent, elastic data
warehouse designed for the cloud. The two systems, how-
ever, have multiple important differences. Unlike MyriaX,
Snowflake uses Amazon S3 as its primary data store; it
does not index data; and it spawns new processes to exe-
cute new queries. Additionally, it does not provide poly-
store query processing capabilities. Similar to our PSLA-
Manager, Snowflake hides the details of compute instances
from users, however it does not give insights about expected
performance to help users guide their cluster size selections.

Several other RDBMSes, such as Redshift [3] and Azure
SQL Database [6], are available as cloud services. Myria’s
innovative cloud service features such as PSLAs could be
implemented on top of these other services.

Finally, for additional work related to specific Myria fea-
tures, we also refer the readers to the various papers detail-
ing these components [22, 36, 49, 57, 58, 68, 67].

9. CONCLUSION
The Myria stack combines performance and ease-of-use

for big data management and analytics. It provides support
for federated analytics and is available as a cloud service.
Myria is an open source project. Its GitHub repository can
be found through our project website [52].
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