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ABSTRACT
Understanding uncertainty is critical for many analytical tasks.
One common approach is to encode data values and uncer-
tainty values independently, using two visual variables. These
resulting bivariate maps can be difficult to interpret, and in-
terference between visual channels can reduce the discrim-
inability of marks. To address this issue, we contribute Value-
Suppressing Uncertainty Palettes (VSUPs). VSUPs allocate
larger ranges of a visual channel to data when uncertainty
is low, and smaller ranges when uncertainty is high. This
non-uniform budgeting of the visual channels makes more
economical use of the limited visual encoding space when
uncertainty is low, and encourages more cautious decision-
making when uncertainty is high. We demonstrate several
examples of VSUPs, and present a crowdsourced evaluation
showing that, compared to traditional bivariate maps, VSUPs
encourage people to more heavily weight uncertainty informa-
tion in decision-making tasks.

ACM Classification Keywords
H.5.0. Information Interfaces and Presentation (e.g. HCI):
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Uncertainty Visualization; Color Perception; Thematic Maps;
Semiotics.

INTRODUCTION
Uncertainty is an inescapable component of collecting, analyz-
ing, and presenting data. A common goal in the communica-
tion of uncertainty is promoting uncertainty-aware decisions:
the audience should be aware of the risks and rewards of cer-
tain decisions, modulate their confidence in their conclusions,
and perhaps refrain from making a decision at all if there is
too much uncertainty. A way that designers can contribute to
this goal is by ensuring that uncertainty information is well-
integrated with the rest of the data. That is, it should be
difficult to discount or ignore the uncertainty in a dataset.

Simultaneous presentation of uncertainty and value necessi-
tates the construction of a bivariate map — a relation, in terms
of visual variables, between 2-tuples (value,uncertainty) and
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Figure 1: A standard bivariate map (left) and a VSUP (right),
used to encode an identical 10x10 grid of random data. Both
use the same visual channels to encode value (position along
the Viridis [46] color map) and uncertainty (lightness and
saturation). However, the VSUP uses a tree-like structure to
allocate colors, defining more bins when uncertainty is low.
This non-uniform budgeting affords better discrimination be-
tween values when uncertainty is low, even though the VSUP
has fewer color bins (in this case, 15 to the bivariate map’s 16).
This tree-like structure also discourages analysis in regions
where uncertainty may be unacceptably high.

mark properties. Due to the interference and interplay be-
tween different visual variables, bivariate maps may suffer
from limited discriminability.

In this paper, we contribute Value-Suppressing Uncertainty
Palettes (VSUPs) for integrating data and uncertainty informa-
tion in visualizations. VSUPs intentionally alias together data
values with high uncertainty, affording greater discriminability
as uncertainty decreases. Traditional bivariate maps might
be thought of as a 2D square, with differing outputs for each
combination of value and uncertainty. In contrast, VSUPs can
be conceptualized as arcs: as uncertainty increases, values are
mapped to smaller and smaller sets of outputs, culminating
in a singularity where all inputs are mapped to an identical,
highly uncertain mark regardless of data value. Figure 1 shows
examples of both a traditional bivariate map and a VSUP.

We describe the motivations for VSUPs, provide examples of
their utility for decision-making under uncertainty, and assess
VSUPs in a crowdsourced experiment. Our results indicate



that VSUPs create close integration between uncertainty and
data. This integration has a demonstrable effect on decision-
making, leading viewers to make more cautious choices that
avoid high uncertainty.

RELATED WORK
Despite the acknowledged importance of uncertainty in un-
derstanding data, explicit representations of uncertainty are
often missing from visualizations [5]. This is partially due
to the complexity of uncertainty as a concept. In typologies
from Thomson et al. [42] and Buttenfield & Beard [7], the
authors note that many, occasionally contradictory, concepts
can fall under the category of “uncertainty,” including data
quality, sampling error, credibility, and provenance.

Reviewing the state of the art in uncertainty visualization in
the field, Greithe et al. [20] and Brodlie et al. [6] present
lists of potential techniques for conveying uncertainty in con-
cert with data. Some of these options (interaction, animation,
and sonification) are not applicable for static charts; even for
dynamic charts, many users do not interact with charts in suf-
ficient detail to recover uncertainty information [44]. While
we acknowledge the potential utility of these techniques in
uncertainty visualization (for instance, the animation used
to convey sampling error in Hullman et al.’s Hypothetical
Outcome Plots [24]), we limit the scope of our discussion to
techniques which center on static charts.

Visual Variables for Uncertainty
One challenge of uncertainty visualization is that the decision
to explicitly encode uncertainty increases the dimensionality
of the data, and so requires the use of (at least one) additional
visual channel [6]. Uncertainty therefore inherently increases
the visual complexity of a visualization. When the data are
already complex to convey, and many of the more common or
accurate visual variables are in use, allocating an additional di-
mension is non-trivial. As the number of dimensions increases,
finding visual variables that are both perceptually accurate (in
either estimation of quantity or discrimination of category)
as well as perceptually separable from all the other encoding
channels, becomes increasingly difficult.

A further hurdle is that not all visual variables are well-suited
for conveying uncertainty. MacEachren et al. [27] evaluate
a number of visual variables with respect to their semiotic
fit for representing uncertainty. They observe that certain
visual variables such as blurriness and transparency seem to
have a more intuitive connection to uncertainty than other
variables such as shape or hue. Unfortunately, Boukhelifa
et al. [4] find that many visual variables habitually used for
conveying uncertainty, such as blur and value, are also difficult
to estimate. This results in a preference/performance gap
where designers must choose between encoding uncertainty
in a way that is intuitive but error prone, or use higher fidelity
channels that may not intuitively convey uncertainty.

Bivariate Maps
While uncertainty can be visualized entirely separately from
the rest of the data (for instance, in a juxtaposed chart), this
runs the risk that uncertainty information becomes ignor-
able [31]. It also complicates analysis, as interpreting the

value and uncertainty of a given data point requires consult-
ing two separate charts. To integrate uncertainty information
into an analysis, we focus on the construction of bivariate
maps, where value and uncertainty information is displayed
simultaneously in a spatially co-located manner.

Bivariate maps can, in principle, be constructed from the com-
bination of any two visual variables (such as shape and color,
or size and texture). For example Ware’s “textons” [49] over-
lay glyphs on top of regions to simultaneously encode two
quantitative values. However, for spatial visualizations like
choropleth maps, heatmaps, and treemaps, visual channels
such as position and length are reserved for data variables
other than value (such as geographic location or relative size).
In these situations, data value is often encoded using color.
Bivariate maps in these settings therefore typically rely on
a visual channel related to color for encoding a secondary
variable, such as opacity [39] or pixel noise [26].

Colors in univariate quantitative color maps should be suffi-
ciently far apart as to be perceptually distinguishable [48], and
vary in lightness as well as hue to afford an implicit ordering
of value [2, 37]. Different choices of color maps can high-
light different features of the data, and should be chosen with
care [38]. These principles extend to bivariate color maps,
with the additional consideration that our perception of color
channels lacks orthogonality. That is, while we can perceive
e.g., the height of a bar in a bar chart independently of its
width, a particular property of a color (e.g., its redness, satu-
ration, transparency, etc.) affect how its other properties are
perceived [15, 50]. Many color channels such as hue and satu-
ration are therefore perceptually integral, which complicates
their use in bivariate maps.

Another recurring design consideration when constructing
color maps is whether to quantize data into a discrete set of
colors, or to encode data using a continuous mapping. While
continuous color maps afford greater fidelity in presenting val-
ues [32], non-linearity in human color perception introduces
errors in extracting numeric values from continuous colors [2].
Quantizing a color map is therefore an exercise in balancing
perceptual error and quantization error [13]. Discrete maps
offer finer control over this balance, which can result in better
performance in tasks involving heatmaps [34].

In general, the quality of bivariate color maps is a multivariate
measure involving consideration of not just the component
color channels, but also the interpolation scheme and the color
of the surround [1]. However, even simple bivariate maps can
be difficult for a general audience to interpret: due to their
additional complexity, Wainer & Francolini [47] reported high
levels of error for participants even for “elementary” graph
reading tasks, and additionally that bivariate legends were
more difficult to memorize and internalize than their univariate
equivalents. Therefore, bivariate maps in practice are often
limited to a small set of output colors [36, 43] (say, a 4x4
matrix as in Figure 1).

Given that bivariate maps, for reasons of either practicality
or perceptual fidelity, have only a limited budget of outputs,
we adapt an insight from Dunn [14] that these limited cate-



gories ought to be assigned with regards to their importance to
analysis tasks, rather than uniformly. Our Value-Suppressing
Uncertainty Palettes apply this insight to data with uncertainty.
Frequently, uncertain information ought to be weighted less
heavily in a decision-making process, or have less prominence
in an analysis, than information with high certainty.

Correll et al. [8, 9] use a precursor of VSUPs in their
LayerCake genomics visualization tool, where marks repre-
senting genomic data with increasing uncertainty are mapped
to a smaller and smaller set of increasingly grey colors, creat-
ing the effect of uncertain values retreating into a “confidence
fog” while highly certain values remain prominent. Other bi-
variate visualizations implicitly alias together uncertain values
through perceptual integrality. For instance, if uncertainty is
encoded by transparency, a maximally uncertain glyph may be
entirely transparent, and so impossible to distinguish from any
other maximally uncertain glyph. Other channels with a semi-
otic connection to uncertainty, such as saturation, value, blur,
or size, have similar deleterious effects on the disambiguation
of colors and shapes. In both cases, the property of aliasing
is ad hoc, and places no guarantees on the discriminability
of colors. The binning and degradation approach of VSUPs
makes the choice to alias values explicit to both the designer
and the viewer, and results in a bivariate mapping with known
perceptual properties.

VALUE-SUPPRESSING UNCERTAINTY PALETTES
Value-Suppressing Uncertainty Palettes (VSUPs) are a tech-
nique for creating bivariate maps of data value and uncertainty.
VSUPs make two central assumptions about bivariate maps:

1. There is a limited budget for perceptual discriminability.

2. Differences among certain data are more germane than
differences among uncertain data.

In some cases, these assumptions are violated. For instance, an
analyst might be interested in “long tail risks” or other “black
swan events,” where the impact of a value, no matter how
uncertain, must be considered and planned for [41]. Other
analysis tasks (such as filtering out outliers), require increased,
rather than decreased, discriminability when uncertainty is
high. However, for many information fusion tasks, the as-
sumption is that uncertainty is related to data quality, or the
variability of data values [35].

If both of these assumptions hold, then it follows that the
designer of a bivariate map should allocate more mark types
to certain values, and fewer mark types to uncertain values.
VSUPs codify this decision by reducing the number of mark
categories for representing value as uncertainty increases.
This means that data encoded using a VSUP will make visible
only the largest of differences in uncertain data, but highlight
comparatively small differences in value when uncertainty
is low. VSUPs therefore act as both a filtering mechanism
(in that values with too much uncertainty are mapped to the
same glyph), as well as an implicit test of effect size (in that
smaller and smaller changes in value are visible as uncertainty
decreases). This strategy of dampening low quality or highly
uncertain values in maps in order to focus on more informative
regions has measurable benefits, including the removal of

statistically spurious visual patterns, and the highlighting of
regions of interest [11].

VSUPs rely on an underlying quantization tree that governs
how values are discretized. Values above a certain uncertainty
threshold are mapped to a singular “root” node. As uncertainty
decreases, the tree branches into leaves, which evenly divide
the data domain. The data value of a parent is the midpoint
of all of its children. These leaves can then branch again, up
to a designer-specified stopping point. The layers quantize
the uncertainty domain, and sibling nodes quantize the data
domain. Figure 1 shows a VSUP with a tree with a branching
factor of 2 and 4 layers, resulting in an output range with 15
distinct colors.

Since the visual channel used to encode uncertainty (e.g.,
saturation, lightness, transparency) often reduces the ability of
people to distinguish colors, VSUPs have the added benefit
of creating bivariate palettes that are perceptually easier to
distinguish, by reducing color resolution in precisely the areas
where color disambiguation would be most difficult anyway.
For instance, the two closest colors in the VSUP in Figure 1
are 1.4 units farther apart in CIELAB color space than the two
closest colors in the traditional bivariate map.

JavaScript code for generating VSUPs for use in D3 [3] charts
is available at https://github.com/uwdata/vsup.

Design Considerations
There are multiple choices that designers must make before
creating a VSUP. Specifically, they must choose which visual
channels map to value (1), uncertainty (2), and the structure
of the underlying VSUP tree (3).

When selecting a visual channel to represent uncertainty, we
recommend channels with both a strong semiotic connection
to uncertainty (such as those recommended by MacEachren et
al. [27]) as well as a relatively large number of perceptually
distinguishable levels (such as those evaluated by Boukhelifa
et al. [4]). Here, we focus on a combination of increasing
luminance and decreasing saturation, as in Hengl & Tooma-
nian [23]. Correll & Gleicher [10] provide evidence that even
audiences without statistical training can successfully interpret
uncertainty information encoded in these channels.

When selecting a visual channel to represent value, the de-
signer should consider the perceptual integrality of the value
and uncertainty visual channels. For instance, we use the
Viridis [46] color map frequently in this paper, as many stan-
dard color ramps (such as sequential ColorBrewer [22] ramps),
following usual best practices, interpolate in both hue and lu-
minance [48]. This interpolation in luminance interferes with
our uncertainty encoding, introducing ambiguity. Ramps such
as Viridis, which avoid very light and very dark colors, reduce
this ambiguity.

When determining the quantization tree, the design should be
careful to avoid having too many output colors. For reasons
of memorability and complexity, Wainer & Francolini [47]
suggest no more than 16 distinct outputs in bivariate maps. For
a binary quantization tree, this results in a maximum tree depth
of 4, as seen in Figure 1. In general, for tasks that require
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Figure 2: Average departure delay for different times of the
day and days of the week visualized with a 2D uncertainty
map. Horizontal position is the hour of scheduled departure,
and vertical position is the day of the week.
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Figure 3: Flight delay data encoded with a VSUP.

finer-grade distinctions between uncertainty, the depth of the
tree could be increased. For tasks involving finer-grade dis-
tinctions between value, the branching factor of the tree could
be increased. However, these factors increase the number
of colors, and so designers should moderate between legend
complexity and data fidelity. Beyond these two parameters,
non-uniform binning would allow the designer to target par-
ticular distributions or important subregions of the data that
would otherwise be difficult to visualize in a limited palette,
as in Dunn’s [14] dynamic bivariate maps. As an additional
form of control, prior tools using VSUP-like techniques, such
as LayerCake [8], allow the analyst to control the bins in the
tree through interaction with the color legend.

EXAMPLES
We present a set of examples showing how VSUPs can be
applied to real-world datasets. VSUPs allocate color bins
asymmetrically amongst value and uncertainty regions, afford-
ing greater discriminability in regions of the chart that warrant
closer scrutiny, while discouraging exploration of regions with
noisy or unreliable signals.

Air Travel Delay
Using a public data set from the U.S. Bureau of Transporta-
tion Statistics [33], we created a heatmap showing average
flight delay for different times of the day and days of the
week for U.S. carriers in January 2017. We use standard er-
ror (s/

p
n) as our measure of uncertainty. We created two

alternate heatmaps of this delay information. Figure 2 shows
a traditional bivariate map, whereas Figure 3 shows a VSUP
generated under the same constraints.

Both maps illustrate a similar trend: flight delays are shorter
towards the beginning of the day, increasing on average over
time. The traditional bivariate map affords only a coarse
examination of this trend: two visible “blocks” of color, early
in the day, and later in the afternoon. The VSUP, in contrast,
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Figure 4: Polling data prior to the 2016 U.S. Presidential
Election, encoded in a traditional 2D bivariate map. The
redness and blueness show the polling lead for Trump and
Clinton, respectively. But many polls had high margins of
error, creating uncertainty about the election results.
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Figure 5: Polling data prior to the 2016 U.S. Presidential
Election, encoded with a VSUP.

has sufficient color resolution to show a quasi-linear trend.
Uncertainty is high only for a few bins for which there are
small number of flights, either on the weekends or late at night.
The VSUP does not obscure any significant trends in the high
uncertainty data, despite having fewer color categories overall.

2016 Pre-Election Polling
Using a public data set from Wikipedia [51] of the statewide
polls that were conducted closest to the 2016 U.S. presidential
election, we created a choropleth map showing which candi-
date was leading in the polls. We calculated uncertainty as the
size of the lead in terms of margin of error (lead/margin). The
AP style guide for reporters suggests that a candidate leading
by more than two margins of error is said to be “significantly
ahead” in the polls [17]. As the lead becomes closer to the mar-
gin of error, there is more doubt about the electoral outcome,
and smaller leads are less definitive.

By providing more color categories when the margin of error
was relatively small, the VSUP map shows that, in many of the
states leaning towards Hillary Clinton, her lead was quite small.
The VSUP map, by limiting inferences about which candidate
was leading when the uncertainty is high, also prevents the
viewer from making strong claims about the outcome of the
election in highly volatile states, even if a state is leaning one
way or the other. Given the relative volatility in polling data,
this caution is warranted.



EVALUATION
We performed two crowdsourced experiments on Amazon’s
Mechanical Turk to evaluate the effectiveness of VSUPs for
integrating uncertainty and value information in visualizations.
This focus on integration meant that we limited our experimen-
tal tasks to scenarios where the participants needed to consider
both value and uncertainty before making a decision. Each
experiment focused on one of two separate tasks:

1. An identification task, where we gave participants charts
with value and uncertainty information, and asked them to
locate specific regions. E.g., “click on the region of the
chart with a value of 0.1 and an uncertainty of 0.2.”

2. A prediction task, inspired by the game Battleship, where
we gave participants charts with both forecast and forecast
uncertainty information, and asked the participants to place
tokens on the board in order to minimize danger. E.g.,
“place your 5 ships on the safest locations on the board.”

We limited our population to Turkers from the United States,
with a prior task approval rate of at least 90%. As the experi-
mental tasks required multi-hue color perception, we presented
participants with a set of Ishihara plates [21] as a pre-test, and
excluded participants who either misidentified the values in
the plates, or who self-reported as having a color vision de-
ficiency (CVD) in the post-test. Based on piloting, we paid
participants $2 for participation, for a target rate of $8/hour.
After completion of the main tasks, we solicited demographic
information, including a risk aversion assay from Mandrik &
Bao [29]. Participants from the first experiment were excluded
from participating in the second.

Experimental materials, including data tables and stimuli
generation code, are available at https://github.com/uwdata/
vsup-paper.

Identification Experiment
We wished to determine what effects, if any, our various design
considerations had on performance at a basic analysis task:
using a bivariate legend to interpret a heatmap. There are a
number of design decisions to be made even after one has
determined which two visual channels will be used to encode
value and uncertainty. In particular:

1. Whether or not to juxtapose or superimpose the data and
uncertainty maps.

2. Whether or not to discretize each visual channel, or encode
values continuously.

3. Whether or not to use a square legend, which gives equal
area to each bin, or a wedge legend, which reduces in size
as uncertainty increases.

4. If discretizing, whether to employ a VSUP or a standard
quantization scheme.

For the identification task, we gave participants a 5x5 heatmap,
and asked them to click on a region of the heatmap that en-
codes a particular (value, uncertainty) pair. To support compa-
rability across conditions, we chose a set of target pairs such
that each target mapped to a unique color across all encoding

types. This resulted in (4+4+2+1)=11 valid targets. For each
trial, we placed one example of each of these 11 targets ran-
domly in a heatmap; the remaining 13 cells of the heatmap
were randomly sampled from this target list. Thus there could
be multiple correct locations in each trial, deterring a strategy
of looking for “oddball” colors.

We selected this task both as a way of assessing the ability
of people to successfully encode and decode values using a
bivariate map, and to provide training for the prediction task
(since we reused the bivariate maps in that task). We measured
performance both in terms of accuracy (did the participant
select the correct point) as well as response time.

We recruited 24 participants for this task: 12 female, 12 male,
(Mage= 31, SDage = 7.8). Each of the participants saw the data
encoded as each of 8 types of bivariate encoding and legend,
with 8 replications, for a total of 64 stimuli. Figure 6 shows
these factor levels.

Hypotheses
We had two initial hypotheses, informed by prior work:

1. Juxtaposed maps, by introducing a second search task to
the identification task (searching for the proper values in
two, rather than one map), would have poorer performance
than other conditions.

2. Continuous maps require more specific and accurate color
matching between value and color, and so would have
poorer performance than discrete conditions.

We had no strong hypotheses about the shape of the legend
(square vs. wedge), but, as the wedge shape makes more uncer-
tain bins in the legend smaller (and thus potentially harder to
disambiguate), we included it as a check against VSUPs which
explicitly alias uncertain values. For this identification task,
which did not involve reasoning with uncertainty, but simply
matching colors to a color legend, we also did not have strong
hypotheses about performance differences between VSUPs
and traditional discrete bivariate maps.

Results
We performed a repeated measures ANOVA on our results to
measure the effect of juxtaposed versus superimposed maps,
and continuous versus discrete legends, on accuracy. Partici-
pant ID was included as a random effect. Figure 7 shows the
performance of each of our 8 conditions.

The results support our first hypothesis. Juxtaposition was
a significant effect (F(1,166) = 5.5,p = 0.02). A post-hoc
t-test confirmed (t = 2.5, p = 0.01) that superimposed charts
(M = 0.58, SD = 0.50) performed significantly better than jux-
taposed (M = 0.51, SD = 0.49) ones. For our identification
task, juxtaposition requires at least two search tasks (one to
locate squares with the correct data value, another to locate
ones with the correct uncertainty value), which introduces
additional error compared to conditions where value and un-
certainty are displayed simultaneously.

The results also support our second hypothesis. Discretization
was a significant effect (F(1,166) = 30,p < 0.01). A post-hoc
t-test confirmed (t = 6.1, p < 0.01) that charts with discrete
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Figure 7: Accuracy results for the identification experiment.
For examples of each condition, see Figure 6. Juxtaposing
two univariate maps for both value and uncertainty requires
an error-prone search task for identification tasks. Continuous
rather than discrete bivariate maps requires an error-prone
color encoding and estimation task. Discrete bivariate maps,
both VSUPs and otherwise, avoid these issues. The confidence
intervals are bootstrapped 95% CIs of trimmed means.

bins (M = 0.63, SD = 0.48) performed significantly better
than charts with continuous color maps (M = 0.47, SD = 0.5).
The lack of quantization bias in continuous maps is countered
by the perceptual error in precisely estimating value from color.
Relying on a discrete set of output colors simplifies this task.

We performed a second ANOVA among the superimposed dis-
crete charts to determine the effect of legend shape (wedge or
square) and quantization scheme (VSUP or standard) on per-
formance, with participant ID as a random factor. We did not
find a significant effect for either the legend shape (F(1,70) =
0.04, p = 0.84) or the quantization scheme (F(1,70) = 1.4,
p = 0.24).

Figure 8: The prediction task. The participant has a list of
locations, and ought to place their ships on locations with low
probability of attack, and high certainty in this probability.
Ships above the heatmap have yet to be placed.

Prediction Experiment
For the prediction task, we gave participants the rules of a
game similar to Battleship. Greis et al. [18] employ these
game-like experimental tasks to assess how different visual
designs communicate uncertainty information, which can be
abstract or complex, to the general audience. In our task, the
participant and a (fictional) adversary have to place tokens
representing ships on a 5x5 spatial grid, with the expectation
that certain squares will be hit by missiles. Players have
to place all their tokens before continuing. The objective
is to minimize the number of your own ships that are hit.
In our task, participants were given a map representing the
predictions of missile strikes in each location on the grid.
The value component was the ship’s danger if placed on the
square. The uncertainty component was the confidence in
this prediction. Other studies of uncertainty representation,
such as in Cox et al. [12], have used “prediction + prediction



uncertainty” stimuli to elicit differences in decision-making
between visualizations of uncertainty.

Our stimuli were created by randomly sampling from values
that fell within each of the 16 bins of the 4x4 2D bivariate
color map. This resulted in 16 samples. The remaining 9
samples were “bad” values, with low safety and high certainty.
This created 4 quartile categories of uncertainty, with a skew
towards the highest quartile. This stimuli design meant that,
while participants had at least one “safe” square (low danger
with high certainty), they were forced to make at least some
guesses in other quartiles.

We selected this task in order to promote risk-averse behavior.
Tversky & Kahneman [45] illustrate that framings in terms
of gains or losses produce reliably different outcomes. In
particular, there is greater perceived value in avoiding large
losses as opposed to striving for a large gain [25]. Our results
from the prior study indicate that discrete, non-juxtaposed
maps outperformed the other bivariate maps we selected, so
we limited our study to only 4 types: square and wedge bi-
variate maps. While other map types might produce different
patterns of decision-making (for instance, the juxtaposed map
might encourage participants to ignore uncertainty information
altogether), their low accuracy for our previous information
fusion tasks led us to discard them, as it would be difficult to
distinguish between different patterns of predictions caused
by the design, and different patterns caused by simply mis-
reading the heatmap. Having fewer conditions also afforded
a within-subjects design that controlled for the variation in
interpersonal differences in strategies and risk-aversion, while
limiting the potential effects of learning and fatigue from large
numbers of stimuli.

The ideal strategy from a value-maximizing standpoint would
be to place tokens on areas with the lowest predicted danger
(highest expected value), ignoring the uncertainty information.
However, as with roulette and other similar games of chance,
the variability in expected value is relevant when considering
where to place bets [30]. A risky player would choose guesses
with high expected value, regardless of the uncertainty of those
points. A more conservative guesser might eschew high-risk,
high-reward locations, resulting in a lower average value of
guesses, but also lower uncertainty. We therefore measured
the distribution of both value and uncertainty of the tokens
placed by the participants.

We recruited 24 participants for this task: 12 female, 12 male,
(Mage= 37, SDage = 9.8). Our selected square and wedge maps
were either VSUPs or traditional bivariate maps, for a 2 (square
or wedge legend) x 2 (VSUP or standard) factorial design,
with 6 replications, for a total of 24 stimuli. Prior to the main
task, we included a short replication of the identification task
from the prior experiment (with 12 stimuli) for training and
exclusion purposes. 3 people with unacceptably low accuracy
on the training task (6%, 6%, and 25% accuracy compared to
a mean of 70%) were excluded from analysis.

Hypotheses
We had two hypotheses, stemming from our belief that VSUPs
promote better integration between uncertainty and value infor-
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Figure 9: 2D histogram of placements from the prediction
experiment. For each trial, participants were asked to place
5 tokens on heatmaps encoding both predicted safety, and
uncertainty in these predictions. There were intentionally more
tokens to place than there were “safe and certain” locations
(top left corner). When looking at traditional 2D maps (left),
participants favored safe but uncertain locations (bottom left
corner). When looking at VSUPs (right), participants favored
locations that were less safe, but more certain.)

mation, and encourage caution by highlighting the ambiguity
introduced by uncertain data. In particular:

1. Participants would avoid targets with high uncertainty
when using a VSUP.

2. This would result in a tradeoff where they would also choose
targets with higher danger when using a VSUP.

As with the prior experiment, we had no strong hypotheses
for square vs. wedge-shaped legends, but included both as a
check against the potential implicit VSUP-like properties of
wedge-shaped legends.

Results
Consistent with our first experiment, we found no significant
effect of legend shape on either uncertainty (F(1,61) = 0.01,
p = 0.92) or value (F(1,61) = 3.1, p = 0.08) of guesses. This
result suggests that wedge- and square-shaped legends pro-
mote similar patterns of decision-making. Overall, we pre-
fer to employ the wedge-shaped legend for VSUPs, and the
square-shaped legend for traditional maps, as it makes the
conceptual differences between the two more apparent.

The results partially support our first hypothesis. We per-
formed a repeated measures ANOVA on our results to measure
the effect of VSUP versus standard quantizations, and square-
versus wedge-shaped legends, on average uncertainty in bets.
We found no significant effect of quantization scheme on aver-
age guess uncertainty (F(1,61) = 0.05, p = 0.83). This result
indicates that there does not appear to be a uniform pattern
of risk aversion between the two scale types. However, given
our quartile-based stimuli design, the central tendency of un-
certainty would not necessarily capture caution in guesses.
To capture differences in this non-normal distribution, and to
test our belief that VSUP users would avoid highly uncertain
regions, we performed a one-sided two-sample, Kolmogorov-
Smirnov test on the distributions of uncertainty in guesses in
the VSUP and traditional bivariate conditions. We found a sig-
nificant difference (D = 0.5, p = 0.03), and an inspection of
the distribution shows that participants using VSUPs were less



likely to make guesses with very high uncertainty. Figure 9
shows this result.

The results support our second hypothesis. A similar ANOVA
for average danger value of guesses found a significant effect
of quantization scheme (F(1,59) = 17, p < 0.01). A post-hoc
t-test confirmed (t = 2.3, p = 0.02) that guesses made with
VSUPs had significantly higher average danger (M = 0.32,
SD = 0.17) (and so lower expected value) than traditional
maps (M = 0.29, SD = 0.18).

These two results, taken together, suggest that VSUPs led
participants to moderate their guesses: avoiding highly un-
certain regions, but willing to “gamble” more on regions of
middling certainty (as in Figure 9). In our design, where these
gambles were usually poor (due to the predominance of “bad”
cells), this moderation resulted in guesses with higher average
danger. However, when expected value and uncertainty are
orthogonal, this moderation can be beneficial, or at least not
harmful. Indeed, for guesses with middling and low uncer-
tainty (quartiles 1-3), where this orthogonality was present,
there was no significant difference (t = 1.56, p = 0.11) in
average danger between VSUP (M = 0.30, SD = 0.24) and
traditional (M = 0.29, SD = 0.24) conditions.

DISCUSSION
Our experimental results have a number of implications for
designers wishing to employ bivariate maps for encoding un-
certainty. Both of our experiments show that the way that
uncertainty information is presented can have a measurable
impact on decision-making. VSUPs make a number of de-
sign choices in presenting uncertainty. Firstly, they present
uncertainty information simultaneously (superimposed) with
value, rather than in juxtaposed charts. Secondly, they encode
value and uncertainty via discrete, quantized bins, rather than
continuously. Lastly, they are designed to alias and suppress
uncertain values, rather than certain values. Our experiments
provide evidence about the potential impact of each of these
choices on performance for information fusion tasks. We
will discuss the impact of our experimental findings on the
consideration of each of these design decisions in turn.

Juxtaposition vs. Superposition
Gleicher et al. [16] propose three major categories for vi-
sualizations that support comparison: juxtaposition (where
two variables are visualized in adjacent charts), superposition
(where the two variables are encoded simultaneously in a sin-
gle chart) and explicit encoding (where the two variables are
reduced to a single calculated variable, which is directly visu-
alized). Juxtaposition has a number of advantages for bivariate
data of this sort: firstly, there are no issues of the integrality of
different components of color perception, as there are separate
maps for both uncertainty and value. Secondly, juxtaposed
displays allow viewers to separately consider patterns in value
and uncertainty. The literature also suggests that superposition,
which requires a bivariate scale, results in poor accuracy even
for basic identification tasks [47].

However, our results indicate that juxtaposed visualizations
have a substantial drawback for information fusion tasks. Inte-
grating information from juxtaposed heatmaps is error-prone,

as it requires searching for connections in two separate charts.
In our experiments, the error introduced by juxtaposition out-
weighed the benefits of having simpler univariate scales rather
than bivariate ones (accuracy of 58% vs. 51% for superim-
posed and juxtaposed charts, respectively). In our experimen-
tal data, where value and uncertainty were not well-correlated,
there were no reliable visual landmarks in common amongst
the value and uncertainty charts, which may have made it diffi-
cult for participants to perform quick correspondence between
value in one chart, and uncertainty in the other. Given this
error-prone information fusion, we recommend either the use
of superposition or explicit encoding for information fusion
tasks involving uncertainty. At the very least, designers should
use interaction (such as highlighting across charts) to make
comparison in dense juxtaposed charts easier.

Discrete vs. Continuous Encodings
When using color to encode data, designers must make the de-
cision whether or not to separate the data into discrete classes
of color outputs, or to employ a continuous and class-less
scale. This, in turn, introduces a trade-off between quantiza-
tion error (the sampling error introduced by binning the data)
and perceptual error (the error introduced by the viewer as
they decode the color). There is also a cost in terms of expres-
sivity and consistency: a designer might wish for quantitative,
continuous information to be represented continuously [28].

However, for bivariate color maps, where often the color chan-
nels for each variable are not perceptually separable, it can
be difficult to decode the color into its component parts. In
our identification experiment this perceptual decoding error
was high. Continuous maps performed the worst of all of our
other bivariate map types (47% accuracy vs. 63% accuracy for
discrete maps). Echoing the results of Padilla et al. [34], we
hold that the error introduced by quantization, which is known
and bounded, has performance benefits even for continuous
data, if the perceptual error is sufficiently high. Bivariate maps,
where the integrality of channels raise this perceptual error,
are a prime example of such a scenario. We advise designers
to avoid continuous bivariate color scales when possible, and
instead employ discrete scales with a relatively small number
of categories.

Risk Averse vs. Risk Seeking Decision-Making
It is often difficult for the general audience to successfully
make use of uncertainty information. In order to minimize the
complexity of uncertainty, uncertain information is often visu-
alized in a binary way, where values either meet some explicit
uncertainty standard, or do not. These binary encodings for un-
certain information, such as error bars for estimates, or “cones
of uncertainty” for hurricane paths, result in binary patterns of
decision-making that do not accurately reflect the underlying
uncertainty in the data [12, 10]. On the other hand, present-
ing more detailed uncertainty information may overwhelm or
confuse the viewer [19].

VSUPs are in a middle ground between sparse but simple,
and dense but complex presentations of uncertainty. At high
levels of uncertainty, VSUPs have only one output color, and
so explicitly prevent any decoding of value. This narrowing of



options is reflected not only in the quantization scheme, but
also in the shape of the legend, narrowing as the uncertainty
increases. We selected this design to promote risk-averse
decision-making. That is, people should be hesitant to make
strong predictions or decisions about values when uncertainty
is high. Our prediction experiment, drawing from Kahneman
& Tversky’s prospect theory [25], was further designed to
elicit avoidance of uncertain data, by framing the predictions
in terms of minimizing losses, rather than maximizing gains.
This framing was reflected in participants mostly making safe
and certain guesses (low danger, high certainty). Where the
differences in decision-making occurred were where the partic-
ipants had exhausted the set of safe and certain locations, and
were forced to value either certainty or expected value. A risk
seeker would choose uncertain locations if the reward were
high enough, whereas a risk-avoider would select locations
with less uncertainty, even with a lower payoff. Participants
using VSUPs were likelier to make these risk-avoiding deci-
sions than when they were using traditional bivariate maps.
Beyond VSUPs, this result indicates that the designers of vi-
sualizations can have fine-grained control over the types of
decision-making their visualizations promote. Visualization
designers should consider not just fidelity to the underlying
dataset, but also the decision strategies their designs support.

Limitations and Future Work
VSUPs assume that uncertain values ought to have less visual
impact than highly certain values. VSUPs therefore act both as
a kind of filtering device as well as a bivariate representation.
This assumption holds in scenarios like the polling dataset
(Figure 5), where the expectation is that highly uncertain data
is unreliable or should otherwise be downweighted in analysis.
If the analyst has a different interpretation of uncertainty, or
wishes to quickly and orthogonally analyze the distributions
of uncertainty and value, other strategies, such as juxtaposed
maps, may be more appropriate. VSUPs are designed for the
integration of value and uncertainty. Designers should take
care in considering when and how this integration is desirable.

Our experiments dealt with cases where both uncertainty
and value were represented by color. The perceptual non-
separability of color channels is well-known [15, 50], and so
the concept of a limited “budget” of distinguishable marks
easier to quantify and illustrate. In principle, a VSUP can
be created for any combination of visual variables. All that
is required is a perceptual model of the interaction between
these two variables. Where these models exist, as with the
interaction between size and color [40], the creation of VSUPs
is straightforward. Where these models do not exist, or where
the perceptual interaction is too complex to efficiently model,
experimental work remains to be done before VSUPs can be
considered a feasible design strategy. We are currently ex-
perimenting with the creation of VSUPs using these other
channels, such as color and size.

VSUPs, like other mappings involving quantization, are also
highly sensitive to the binning scheme used. Uncertain data
with values that fall very close to bin boundaries may end up
having large color differences, even though they may be close
in value. The comparison to effects tests is therefore imperfect,

and a particular item’s encoding in a VSUP cannot be used
as a proxy for a test of statistical significance. As with other
quantized forms of data analysis, including histograms and
geospatial binning, analysts and designers should consider the
distribution of values before quantizing.

Conclusion
Uncertainty, data quality, or confidence values are often con-
sidered separately from the data itself, relegated to tooltips or
visually distant supplemental charts. We contend, in contrast,
that uncertainty information ought to be directly integrated
within a shared chart. This integration introduces additional
complexity in the design and presentation of data. Value-
Suppressing Uncertainty Palettes represent one strategy for
dealing with this complexity, by assigning mark properties in
a way that supports the disambiguation of values in data where
uncertainty is low, but suppresses these judgments when uncer-
tainty is high. This decision of how to allocate visual variables
promotes patterns of decision-making that make responsible
use of uncertainty information, discouraging comparison of
values in unreliable regions of the data, and promoting com-
parison in regions of high certainty.
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