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ABSTRACT

Legible labels should not overlap with other marks in a chart. The
state-of-the-art labeling algorithm detects overlaps using a set of
points to approximate each mark’s shape. This approach is inefficient
for large marks or many marks as it requires too many points to detect
overlaps. In response, we present a Bitmap-Based label placement
algorithm, which leverages occupancy bitmap to accelerate overlap
detection. To create an occupancy bitmap, we rasterize marks onto
a bitmap based on the area they occupy in the chart. With the
bitmap, we can efficiently place labels without overlapping existing
marks, regardless of the number and geometric complexity of the
marks. This Bitmap-Based algorithm offers significant performance
improvements over the state-of-the-art approach while placing a
similar number of labels.

Index Terms: Human-centered computing—Visualization—Visu-
alization techniques; Human-centered computing—Visualization—
Information Visualization

1 INTRODUCTION

Text labels are important for annotating charts with details of spe-
cific data points. To be legible, labels should not overlap with other
graphical marks in the chart. Since manual label placement can
be tedious, prior work proposed automatic label placement algo-
rithms (e.g., [7, 8, 11–13]). As the placement of each label can be
arbitrary and depend on the placement of other labels in the chart,
perfectly maximizing the number of placements is an NP-hard prob-
lem with respect to the number of labels to be placed. In practice,
label placement algorithms need to strike a balance between achiev-
ing better performance (especially for interactive applications) and
maximizing the number of labels placed.

To achieve interactive performance, many label placement algo-
rithms (e.g., [7, 8]) use a greedy approach, instead of examining
all combinations of label placements. To place each label, these
algorithms first determine a list of preferred positions. They then
place each label at a preferred position that is unoccupied. If all
possible placements lead to overlaps, they omit the particular label.
This greedy approach greatly reduces the search space to be linear
with respect to the number of labels. However, detecting overlap-
ping elements remains the bottleneck. A naı̈ve overlap detection by
comparing each position of a label with all placed labels yields an
O(n2) runtime in a chart with n labels [2], which can be problematic
for charts with many marks.

Particle-Based Labeling [7], the state-of-the-art fast labeling algo-
rithm, accelerates overlap detection by simulating shapes as particles
(collections of points) and comparing each label position only to par-
ticles in its neighborhood. This approach works well for charts that
contain small shapes like scatter plots. However, for larger shapes,
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the algorithm needs to sample many points to simulate the shape’s
form, significantly increasing required computations for overlap
detection. As the number of points to check with depends on the
number of marks and their sizes, the required computation increases
significantly for plots with many large marks.

In this paper, we aim to improve the performance of label place-
ment algorithms with a more efficient way to detect overlapping
elements. In addition, we aim to generalize the overlap detection
technique so that it can be used with different types of charts. To
achieve these goals, we make three contributions.

First, we present occupancy bitmap, which record if pixels on a
particular chart are occupied, as a new data structure for fast label
overlap detection. All graphical marks are rasterized to a bitmap to
record the pixels that they occupy. This bitmap structure can leverage
bitwise operators to quickly detect if a new label overlaps with any
existing elements in the chart and update occupancy information
after a new label is placed on the chart. With this approach, the cost
to detect overlaps for a new label is fixed based on the chart size
and size of the label, regardless of the number and the size of other
graphical marks in the chart.

Second, we apply occupancy bitmaps to label various charts with
different placement strategies including scatter plots, connected
scatter plots, line charts, and cartographic maps.

Third, to evaluate our approach, we compare it to Particle-Based
Labeling [7]. Our approach requires over 22% less time to label a
map of 3320 airports in the US and reachable airports from SEA-
TAC airport, while placing a comparable number of labels. To facili-
tate this evaluation and the adoption of our method, we implement it
as an extension to the Vega visualization tool [9].

2 RELATED WORK

Prior work on automatic label placement has investigated different
aspects of labeling including the optimization goal of the labeling
algorithm, the method to detect overlapping marks, label positioning,
priority of each label, and orientation of each label.

Existing approaches for placing labels often either prioritize vi-
sual quality or runtime performance. Several projects aimed to
improve the visual quality of certain chart types by defining and
optimizing certain quality metrics [1, 3, 6, 11, 14]. However, these
approaches are not generalizable as these quality metrics are typ-
ically specific to the chart types. As the number of labels placed
is important for giving more information to readers, the number of
labels placed is often used as a proxy for visual quality. Some has
applied several techniques such as simulated annealing [13] and 0-1
integer programming [12] to increase the number of labels placed.
However, these approaches are slow as they iteratively adjust label
layouts for better ones. To achieve interactive runtime performance,
prior works use a greedy approach [7,8]. These algorithms can place
10,000 labels within the order of milliseconds. Therefore, they are
suitable for visualizing large data sets or interactive charts.

In general, a greedy label placement algorithm has two inputs:
(1) a set of data points D to label, (2) a set of existing marks M that
labels need to avoid. From these inputs, it takes the following steps
to determine label placements:

1. Include all the marks M in a data structure O that stores occu-
pancy information.



2. For each data point in D:
(a) Determines a list of candidate positions P nearby its

corresponding marks, ordered by their preferences.
(b) Find the most preferable position p ∈ P that does not

overlap with any mark as recorded in O.
(c) If a non-overlapping position p exists, place the label at

the position p and update O to include the label placed.

To determine candidate label positions for a mark, labeling algo-
rithms often use 8-position model [5], generating candidate positions
based on the four corners (e.g., top-left) and sides (top, bottom, left,
and right) of the mark’s axis-aligned bounding rectangle. Hirsch [4]
extends this discrete positioning approach as a more generalized
”slider model”. This paper applies the standard 8-position model to
generate candidate positions for different chart types and focus on
accelerating overlap detection.

Since detecting overlapping marks is the bottleneck for label
placement algorithms, prior work has investigated data structures to
speed up overlap detection. The trellis strategy by Mote et al. [8]
subdivides a chart into a two dimensional grid. To check if a label
can be placed at a position, it checks the positions of other data
points and their labels in neighboring grid boxes.

To generalize trellis strategy for arbitrary marks, Luboschik et al.
presents Particle-Based Labeling [7], which represents a mark as a
set of virtual particles that are sampled to cover the areas occupied
by the mark. It then applies the trellis strategy to check for overlaps
between the virtual particles instead of the actual marks. To sample
particles from a mark, they propose two approaches. First, image-
based sampling rasterizes all the marks in M onto an image and then
samples particles from occupied pixels. Alternatively, the vector-
based approach samples points to represent the contours of vector
graphics of marks.

Particle-Based Labeling works for any kind of marks, but it is
more efficient for detecting overlaps between labels and small marks.
For large filled marks (such as an area in area chart), Particle-Based
Labeling can be inefficient because it needs to represent a filled
mark with many particles densely placed inside the mark’s occupied
area. Thus, checking whether the position of a label is occupied by
any mark in a particular grid box is expensive. This paper presents
a Bitmap-Based algorithm, which improves upon Particle-Based
Labeling and can efficiently detect overlaps in charts with large
filled graphical marks.

3 FAST OVERLAP DETECTION WITH OCCUPANCY BITMAP

We now present an occupancy bitmap as a data structure to accelerate
overlap detection, which is the bottleneck of label placement.

To accelerate overlap detection, an occupancy bitmap allows a
label placement algorithm to efficiently check if a candidate position
for a new label is previously occupied. Once a new label is placed,
the labeling algorithm can also quickly update the occupancy bitmap
to include the newly occupied area.

An occupancy bitmap is a two-dimensional bitmap of the same
resolution as the screen-space (in pixel area) of the chart. Building
on well-known bitmap (or bit arrays) structures [10], each bit in the
occupancy bitmap records the occupancy of its corresponding pixel
in the chart as shown in Fig. 1. A bit is set to one if its corresponding
pixel is occupied and zero otherwise.

Occupancy bitmap provides two key benefits over the data struc-
ture used in Particle-Based Labeling. First, by using a bitmap to
store occupancy information, the time required to check if placing
a label at a certain position overlaps with any existing elements
depends only on the chart size and label size, but does not depend
on the complexity and the number of existing elements. Second, the
bitmap structure leverages bitwise operators to accelerate two key
operations for overlap detection: (1) The lookup operation checks if
the area is partly occupied to decide whether the area is available for

Figure 1: (Left) We rasterize connected scatter plot onto the bitmap
to mark occupied pixels, shown in orange. (Middle) We use the 8-
position model [5] to generate candidate positions for label placements.
The cyan positions are available, while the red ones are not. (Right)
After placing the label “1975”, the pixels under the label need to be
marked as occupied.

Figure 2: The black indices indicate the x/y coordinate of pixels in
the chart. The red indices indicate the indices of the underlying
array of the bitmap. For the purpose of demonstration, the bitmap
is implemented on an array of 4-bit integers each representing a bit-
string of length 4. The blue circles are marking occupied pixels. The
yellow box is the area to lookup or update.

placing labels; (2) The update operation marks all bits in the area
taken up by a new label placed as occupied.

We implement the bitmap using a one-dimensional array of n-bits
integers, in which each integer represents the bits of a contiguous
subset of a row in the bit matrix. Thus, an integer in the array
encodes the occupancy of n horizontally consecutive pixels in the
chart.1 For a chart with width w and height h, the occupancy of the
pixel (x,y) is the bit at the position ((y×w)+x) mod n of the integer
at the array index b (y×w)+x

n c. This bitmap layout is efficient because
it supports looking up and updating a vector of bits simultaneously,
instead of one bit at a time.

In the underlying array of the bitmap, there are two sets of integer
entries that interact with the areas. First, I f is the set of integer
entries that are fully covered by the area, shown in the red column
number 1 and 2 in Fig. 2. Second, Ip is the set of integer entries that
are partly covered by the area, in the red column 0 and 4 in Fig. 2.

For lookup, the algorithm can check if each integer entry in I f
is zero. For each entry in Ip, the algorithm masks the entry with a
bitwise-and operation to include only the bits inside the area, before
checking if the masking result is zero. For example, arr5 and arr6 in
Fig. 2 are in I f . The integer value of each entry is 00002, meaning
that the four pixels it represents are all unoccupied. arr4 and arr7
are in Ip. The integer value of arr7 is 00112. The masking value is
10002 because only the leftmost bit is in the area. The masking result
is 00112&10002 = 00002, meaning that the leftmost bit, which is
inside the area, is unoccupied. The same process with different
masking value is applied for the integer value of arr4. Then, we
can conclude that the bits from coordinate (2,1) to (12,1) are all
unoccupied (zero). The process is repeated for row 1 to row 4 to
check the whole rectangular area for the potential label position.

All the bits represented by each integer entry in I f can be set
as occupied simultaneously by setting the integer value of each
entry to 11...112. For each entry in Ip, the algorithm masks the
entry with a bitwise-or operation to retain previous values of the

1In our JavaScript implementation, we use 32-bit integer as it is the largest
available integer size in JavaScript.



bits outside of the area. For the example shown in Fig. 2, arr5 and
arr6 are in I f , each entry is set to 11112, meaning that four bits
that it represents are all set to occupied. arr4 and arr7 are in Ip.
The integer value of arr7 is 00112. The masking value is 10002
because only the leftmost bits are in the area. The masking result is
00112|10002 = 10112. The entry arr7 is then set to 10112, meaning
that the leftmost bit, which is inside the area, is set to occupied.
Notice that the right three bits of arr7 are kept as they were because
the algorithm masks the integer entry with 10002 to retain their
previous values. The same process with different masking value is
applied for the integer value of arr4. After running these steps, all
bits from coordinate (2,1) to (12,1) are set to occupied. However,
the algorithm does not repeat the process for all rows 1 to 4. Instead,
it only marks the first, the last, and every labelHeightmin row as
occupied; labelHeightmin is the height of the label that has the
shortest height. So, if labelHeightmin = 2, this process repeats for
row 1, 3, and 4. Updating fewer rows of bits speeds up update
operations, while not losing any information about the area marked
as occupied. A label of at least height labelHeightmin that overlaps
with the occupied area is guaranteed to overlap with at least one of
the rows set to occupied.

Checking for overlap or marking an integer entry as occupied
can be done in a constant number of bitwise-operations. These
operations have constant runtime, regardless of the size of the integer.
Our implementation uses the largest available integer size, to process
many bits in parallel.

To record the areas of the marks for the labels to avoid, we ras-
terize all the marks in M onto the bitmap. Every pixel that is not
fully transparent is considered occupied and its corresponding bit in
the bitmap set to one. The number of bits used to represent marks
is bounded by the size of the chart. Thus, the runtime for rasteri-
zation linearly depends on the chart resolution and number of the
graphical marks. After the rasterization, a labeling algorithm using
the occupancy bitmap can efficiently perform occupancy checks and
updates. The runtime for an occupancy check or an update only
depends linearly on the size of the label, regardless of the number
and size of the marks that need to not overlap with labels.

4 FAST OVERLAP DETECTION FOR LABELING CHARTS

In this section, we apply fast overlap detection using the occupancy
bitmap to place labels in scatter and connected scatter plots, line
charts, and maps. The algorithm for placing labels is greedy, follow-
ing the labeling steps described in Sect. 2. It first rasterizes all marks
onto an occupancy bitmap. It then places all labels in one pass. For
each data point to label, the algorithm iterates through the candidate
label positions. It places the label at the first candidate position that
does not overlap with any mark in the occupancy bitmap (skipping
the remaining candidates). Before continuing with the next label,
it marks the area taken by the label placed as occupied in the occu-
pancy bitmap by marking the rectangular bounding box of the label
(Fig. 2). The algorithm to add labels in these example chart types
only differs in terms of (1) the graphical marks to be avoided by
labels and (2) the candidate positions for labels.

For scatter and connected scatter plots, we use the 8-position
model [5] to generate candidate positions around each point. For
scatter plots, the marks to be avoided by labels include the point
marks that represent records in the plot. For connected scatter plots,
the marks include the points that represent records in the plots and
the lines that connect them (Fig. 3).

In a line chart, each line includes a series of points and a path
that connects all the points. Line charts are similar to connected
scatter plots, but often one label represents a whole line instead of a
single record. Therefore, the labeling algorithm may place one label
per line, at the end of the line it represents. In this case, candidate
positions include top-right, right, and bottom-right of the rightmost
point of each line.

Figure 3: (Left) Labeled connected scatter plot. (Right) A snapshot of
the bitmap when labeling the connected scatter plot. Here, a greedy
labeling algorithm already placed labels in the left half of the chart.

As shown in Fig. 4, a map can contain points that represent loca-
tions, which need to be labeled, and paths that represent geographical
features (e.g., country outlines). In this example, we also draw line
segments to show paths between different locations. Similar to scat-
ter plots, we use the 8-position model to generate candidate positions
for maps.

5 EVALUATION

To evaluate our labeling algorithm using occupancy bitmap, we com-
pare it to Particle-Based Labeling [7], the current state-of-the-art fast
labeling algorithm. To perform this comparison, we implemented
both algorithms as transforms in Vega [9] and measure runtime and
number of labels placed for each condition.

Our benchmark example is a map that shows airports in the US
and travel routes between the Seattle-Tacoma airport (Sea-Tac) and
other airports2, as shown in Fig. 4. The dataset contains 3320
airports and 56 routes from Sea-Tac. In the chart, each black dot
represents an airport with a route to Sea-Tac. A black line between
the airport and Sea-Tac depicts the corresponding route. Red texts
each in a red box are the labels representing names of airports that
have a direct route to Sea-Tac. Meanwhile, a gray dot represents
an airport without a direct route to Sea-Tac. The chart also outlines
US states in light gray. In this benchmark, we run the algorithms
to place labels (shown in teal) for airports without a direct route to
Sea-Tac. Each airport contains eight candidate label positions (2
horizontal, 2 vertical, and 4 diagonal) around the airport location.
The lines, points, red labels, and outline paths are placed before
running the algorithm, acting as obstacles for the teal labels to avoid.
To account for higher resolution displays, we test the algorithm with
chart widths ranging from 1000 pixels up to 8000 pixels, with a
fixed aspect ratio of 5:8.

For the baseline condition, we use the Particle-Based Labeling [7]
with image-based sampling instead of vector-based sampling for two
reasons. First, image-based sampling is a more practical approach to
adopt in visualization tools because every standard graphic library
can rasterize any mark types. Meanwhile, vector-based sampling
requires separate implementations for different mark types. Second,
the image-based approach is parameter-free. In contrast, the vector-
based approach requires adjusting the sampling rate of particles to
balance the fidelity against runtime performance.

We also notice that the mark rasterization process in Particle-
Based Labeling has two issues. First, a particle that represents an
occupied pixel is placed at the center of the pixel. This placement of
particles may allow a label to slightly overlap with other marks by
a half pixel, as shown in Fig. 4D. Second, the algorithm rasterizes
every occupied pixel into a particle, which is unnecessarily too many.
The number of particles used affects the runtime of the algorithm as
overlap detection needs to compare a position to more particles.

We addressed these two issues in a version of Particle-Based
Labeling, which we refer to as Improved Particle-Based Labeling.

2This map is originally from the Vega-Lite example gallery at https:
//vega.github.io/vega-lite/examples/geo_rule.html.
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Figure 4: The labeling results from (A) our Bitmap-Based Labeling
and (B) Particle-Based Labeling by Luboschik et al. [7]. (C) shows
the visual difference between (A) and (B). The original Particle-Based
Labeling may place a label that overlaps with existing marks by a half
pixel. For example, the bounding box of the text’s bounding box, as
indicated with the red cross in (D), overlaps with a nearby line. Our
Improved Particle-Based Labeling algorithm address this issue.

We addressed the first issue, a correctness issue, by placing particles
at the four corners of an occupied pixel. Since a label’s bounding box
is an axis-aligned rectangle, it cannot overlap with an occupied pixel
without overlapping with a particle at one of its corners first. We
then address the runtime issue by omitting particles that are too close
to others and thus are redundant. To do so, our improved algorithm
rasterizes a mark in two phases. First, it rasterizes all particles
along the outlines of the mark. Second, it rasterizes particles inside
the marks for every other Hmin pixels vertically and Wmin pixels
horizontally, where Hmin is the height of the label with the shortest
height and Wmin is the width of the label with the shortest width.
This optimization retains the algorithm’s correctness, while greatly
reducing the number of particles placed.

5.1 Performance
For each experimental condition (labeling algorithm and chart
width), we run the task 20 times and calculate the median run-
time and number of labels placed. Fig. 5 shows that the improved
Particle-Based Labeling algorithm is faster than the original one as

Figure 5: The runtime and the number of label placed by the Bitmap-
Based algorithm, the original Particle-Based Labeling algorithm, and
the Improved Particle-Based Labeling algorithm. The gray bands
show the differences between conditions.

the chart size increases. Our Bitmap-Based algorithm performs sig-
nificantly better than both the original and Improved Particle-Based
Labeling algorithms, taking at least 22% less time to run across the
chart sizes. The improvement also generally increases as the chart
size increases.

5.2 Number of Labels Placed

As we discussed earlier, the original Particle-Based Labeling may
allow a label to overlap with a mark by a half pixel, thus it places
significantly more labels than Improved Particle-Based Labeling and
Bitmap-Based Labeling.

To avoid the effect of this correctness issue, we focus on the com-
parison of Bitmap-Based Labeling with Improved Particle-Based
Labeling. Bitmap-Based Labeling placed 0.8% fewer labels for
charts with 8000 pixels width and 3.2% fewer labels for charts with
1000 pixels width. Thus, we can conclude that Bitmap-Based Label-
ing can place a similar number of labels as Particle-Based Labeling
if we only count labels that do not overlap with any marks.

6 CONCLUSION AND FUTURE WORK

We present occupancy bitmap, a data structure that can efficiently
detect overlaps between a label and other marks or labels in a chart.
We apply this bitmap in a greedy label placement algorithm and
apply it to label scatter plots, connected scatter plots, line charts, and
maps. We compare this Bitmap-Based Labeling algorithm with the
state-of-the-art Particle-Based Labeling algorithm, showing that the
Bitmap-Based algorithm is significantly faster and can place similar
numbers of labels in charts.

For future work, we plan to apply occupancy bitmaps to label
other charts that need a different placement strategy other than the
8-position model used in this paper. For example, stacked area charts
need a method to place a label inside each area shape.

For chart interactions like zooming or panning, a naı̈ve greedy
label placement algorithm may re-render label placements for every
frame of animations, which can be too slow for large datasets. We
plan to explore better optimization to avoid re-rendering in every
new frame, while providing smooth interactions.
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