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Abstract—Time-series data—usually presented in the form of lines—plays an important role in many domains such as finance,
meteorology, health, and urban informatics. Yet, little has been done to support interactive exploration of large-scale time-series data,
which requires a clutter-free visual representation with low-latency interactions. In this paper, we contribute a novel line-segment-based
KD-tree method to enable interactive analysis of many time series. Our method enables not only fast queries over time series in
selected regions of interest but also a line splatting method for efficient computation of the density field and selection of representative
lines. Further, we develop KD-Box, an interactive system that provides rich interactions, e.g., timebox, attribute filtering, and coordinated
multiple views. We demonstrate the effectiveness of KD-Box in supporting efficient line query and density field computation through a
quantitative comparison and show its usefulness for interactive visual analysis on several real-world datasets.

Index Terms—Many time series, density-based visualization, interactive visualization for large-scale data

1 INTRODUCTION

An increasingly large amount of time-series data are being collected,
stored, and analyzed in a broad range of domains such as finance, health,
and urban informatics. To gain insights into these time series, analysts
usually need to explore, compare, and relate the data of multiple entities
whose numbers can range from dozens to millions, e.g., multiple stocks,
machine’s power consumption, etc. Thus, interactive analysis systems
that scale to large time-series data are in great demand.

Typical methods [19] visualize time-series data as individual lines in
a line graph. These methods usually provide dynamic query tools for
users to interactively filter a subset of lines that satisfy certain patterns to
enable interactive exploration. As the number of time series increases,
such line graphs often suffer from overplotting and slow querying, hin-
dering analysts to interactively explore the data. To reduce visual clutter,
researchers have proposed density-based methods [11, 37] to visualize
many time series together as a density field rather than as individual
lines. However, density-based visualizations do not support the inter-
active exploration of time-series data mainly due to three limitations.
First, the calculation and rendering of a density visualization on the
CPU are too heavy to provide interactive feedback. Second, querying a
subset of lines from a density visualization is almost impossible since
the visualization is merely a raster image, which omits the individual
lines. Third, while density visualizations give analysts a sense of the
overall density pattern of the data, the detailed information of individual
lines is lost, especially the representative continuous trends. Therefore,
density visualizations hinder analysis tasks that involve individual time
series, e.g., what are the representative stocks in a given time interval?
Clustering of time-series lines might be possible for identifying repre-
sentative lines, however the involved computational cost is too high [1]
for interactive exploration. These limitations motivate us to study how
to enable interactive analysis of many time series while combining the
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advantages of line graphs and density fields.

Supporting interactive exploration of large-scale time-series data is
a non-trivial task. The challenges lie in three fundamental requirements
that existing density-based visualizations cannot satisfy:

(i) fast rendering—the calculation and rendering of the density field
must be fast enough to give responsive feedbacks to users;

(ii) fast querying—the visualization must allow low-latency interac-
tions to query line subsets in time-series exploration; and

(iii) representative lines—the visualization must also present major
trends by showing representative lines in regions of interest.

These challenges become more serious, as the number of lines (time
series) increases. We need novel approaches that can simultaneously
present global trends and local representative time series, while sup-
porting fast rendering and querying.

In this paper, we contribute a novel K-Dimensional(KD)-tree method
to enable interactive analysis of many time series. At the core of our
method is a line-segment-based KD-tree [31] we adapted for time-series
visualization. The KD-tree is constructed by first segmenting each time
series into a few line segments and then building a KD-tree for all
line segments. To support various query operations for interactive
exploration, e.g., rectangular brush and angular query [19], we build
a 3D KD-tree in the time-value-slope space. Such a KD-tree can be
built in less than 30 seconds for a dataset with 100K time series and
13.5 million data points. With our incremental query, line search can
be completed in less than 15 milliseconds on average with a search
accuracy of over 98.5% for the various datasets we tested in this work.

With an efficient radius nearest line (RNL) search, our KD-tree
enables efficient computation of density field via line gathering [6,
58]. For each pixel in a given display, we perform an RNL search to
find all line segments within a given radius r and quickly obtain the
combined density of these segments. Our method enables fast rendering
of the density of many lines in an order of magnitude less time than
the state-of-the-art implementation [30]. Once the density field is
available, we provide a heuristic method to locate representative time
series in a selected region of interest. Our method finds diverse time
series, while considering the density and shape of the lines. Overlaying
such representative time-series lines on the density field or all the
selected lines facilitates users to interactively explore local patterns,
while showing the global trend of the entire data.

We develop KD-Box1, an interactive system with flexible interac-
tions with Timebox [19] and coordinated views for visual exploration
of large-scale time-series data. To evaluate our method, we compare
it with existing approaches of density field computation and dynamic

1https://kd-box.github.io



query. The experimental results show that even with 100K time se-
ries, our method can deliver real-time interactivity on high-resolution
(1200×600px) visualizations. Also, we demonstrate how KD-Box
enables analysts to quickly test different hypotheses on their large
real-world time-series data. Our main contributions are listed below:

• An efficient line-segment-based 3D KD-tree built in the time-
value-slope space that enables incremental query update for inter-
active exploration of many time series;

• Fast density field computation by KD-tree-based line gathering
and a heuristic method for selecting representative lines; and

• An interactive exploration system with rich interactions that
demonstrates the effectiveness of our method via a quantitative
comparison and applications on large real-world datasets.

2 RELATED WORK

2.1 Visualization for Many Time Series

Analysts in many domains need to visualize time-series data with inter-
active exploration. To reduce overplotting, researchers have proposed
clutter-free visualizations and interactive query methods.

Clutter-free visualization. Many visualization approaches have been
introduced for visualizing time-series data, such as calendar-based [49],
circle-based [54], symbol-based [25], and tile-based [44]. Among
them, line graph is the most common way to present time-series data.
Javed et al. [21] summarized the trade-offs among the line-graph-based
techniques. All these methods, however, suffer from overplotting when
the underlying data is large. Lopez-Hernandez et al. [29] developed
a 2.5D layer-based technique for many time series, but it is designed
mainly for time series with very small ranges in the vertical direction.

Instead of visualizing individual lines, Muigg et al. [40] compute a
frequency binmap [42] (a discrete density field) by counting the number
of time series that pass through each pixel. With three additional degree-
of-interest (DOI) variables per data item, their four-level focus+context
approach composites four density fields of a time series. Later, Lampe
and Hauser introduced continuous line kernel [23] and further proposed
Curve Density Estimates (CDE) [11] to visualize the density of many
lines, aiming to resolve the visual clutter issue. Such density field
enables users to see the overall trends in the data. However, the calcu-
lation of CDE is too slow to support interactive exploration. Inspired
by CDE, Moritz and Fisher present DenseLines [37] that aggregates
the data into bins and generates a discrete density representation of
the time-series data. They further suggest normalizing density by arc
length to remove artifacts in the density fields. Though DenseLines
can be computed faster than CDE, it is still not fast enough to generate
smooth density in real-time for interactive exploration of 100k lines
(see Sect. 5.1). In this work, our method ensures a smooth interaction
with the help of a pre-computed line-segment-based KD-tree.

Interactive query. Instead of visualizing all time series at once, an
alternative approach to reduce visual clutter is to allow the user to
interactively query a subset of lines for display. For instance, Time-
boxes [19] and QuerySketch [53] provide interaction widgets that allow
users to query specific time series based on their shapes. Zhao et al. [57]
propose ChronoLenses, which uses a lens metaphor to support explo-
ration of local regions in time-series data. However, these methods do
not scale well to large time-series data because the queries supported
in these systems are too slow for interactive exploration.

Researchers have also developed techniques to speed up the query
process for large-scale data. Most of these techniques use advanced
data management techniques, such as data cubes [26, 28], approxima-
tion [8,38], and prefetching [3,39]. Some of them have been optimized
to support large time-series data. ATLAS [7] combines predictive
caching and level-of-detail management to ensure smooth interactions
in exploring massive time-series data. Time Lattice [35] customizes a
data-cube structure for time-series data with an implicit temporal hierar-
chy, resulting in multi-resolution queries on time series at an interactive
rate. However, these methods visualize time series with line graphs
and cannot be adapted for density-based visualizations. The four-level

focus+context framework [40] supports query in density fields but dis-
plays the results as another DOI variable’s density field, losing the
details of the selected (original) lines. In contrast, our KD-Box allows
users to interactively query large-scale time-series data with flexible
interactions introduced by Timebox [19] and simultaneously supports
density-based visualization and representative-line selection.

Representative-line selection. Clustering is a common solution for
picking representative lines from time-series data in scientific visual-
ization. Moberts et al. [36] compared different clustering methods and
distance measures for DTI clustering, and Yu et al. [56] applied hierar-
chical clustering to streamlines and created a hierarchy of streamline
bundles. However, most of these techniques are not interactive due
to the heavy computational cost of clustering. For time-series data,
representative series can also be selected by directly clustering the time
series [1], but doing so is computationally expensive. To bypass this
issue, we advocate a heuristic method based on the density field to
efficiently identify representative time series.

2.2 Density-based Visualization
Density-based visualizations are commonly used to declutter charts
with many data points. A naive way to show the density is to make
individual marks semitransparent and employ alpha blending to show
dense regions as more pronounced [10]. More sophisticated methods
aggregate data points that are close to one another and visualize the
computed density field. Heatmaps show density as colors using scales
that can be tuned to highlight large ranges (e.g., using a log scale) or
highlight the difference between no data and some data [22].

Typical examples of density visualizations are density-based scat-
terplots. Mayorga and Gleicher introduced Splatterplots [34], which
automatically groups dense data points into density contours and sam-
ples the remaining points. Splatterplots combine data points and density
contours through perceptually accurate color blending. Other meth-
ods blend data points and density contours by reducing the opacity of
densities [33] or by smoothing [55]. Density visualization has also
been used in other chart types, such as trajectory maps [43], parallel
coordinates [2, 13], and graph visualization [24, 48].

Most existing techniques estimate density via splatting that con-
volves each primitive sample (node or edge) with various kernels and
accumulates the contributions from all samples. For example, Graph
splatting [48] convolves each node with a Gaussian kernel for rendering
large graphs without visual clutter. Telea and Ersoy [45] and Hein-
rich et al. [17] use edge splatting to produce image-based edge bundling
and continuous parallel coordinates, respectively. As an object-order
approach, the complexity of the splatting techniques depends on the
number of visual primitives, so they might be slow for many time series
on the CPU. In contrast, our density field computation is an image-order
approach. Its complexity depends on the screen space, or the number of
pixels. Accordingly, our method gains more advantages as the number
of objects increases.

For data points sampled from time-series data, Lampe and Hauser-
proposed Curve Density Estimates (CDE) [11], which shows distribu-
tional characteristics along the time axis enabled by a moving, column-
based normalization. By showing the density field, CDE achieves
clutter-free visualizations but it is difficult to implement and slow to
compute. Moritz and Fisher [37] introduced DenseLines, a special
case of CDE that groups data into bins and generates discrete density,
which is multiple orders of magnitude faster than CDE on the GPU.
However, both methods omit the information of individual lines, so
users cannot explore details in the time-series data. Our method im-
proves over existing density-field-based time-series data visualization
in three aspects. First, we design a 3D line-segment-based KD-tree in
time-value-slope space to enable interactive query of time-series lines
in density fields. Second, we propose fast computation of density fields
for time series via KD-tree-based RNL search. Last, we present both
the density and representative lines together, giving analysts details
about the individual lines to help explore local regions of interest.



3 BACKGROUND: TIMEBOX AND CURVE DENSITY ESTIMATE

In this section, we introduce nearest line queries and timebox queries,
review the background of Curve Density Estimate (CDE), and discuss
how lines query technique can be applied to CDE.

Nearest Line Queries. Given a set of curves, Lu et al. [31] proposed
two neighbor-based line query techniques: radius-nearest line (RNL)
query and k-nearest line (KNL) query. Given a query point q, RNL
finds all curves within a distance of r from q, whereas KNL finds the
k curves nearest to q. Fig. 1a illustrates RNL and KNL queries using
query points q1 and q2, respectively. Note that the point in a curve with
the shortest distance to q might not be a sample point on the curve.

TimeBox and Angular Queries. Given a line graph with a set of time
series, users can select the series that cross a region of interest specified
by brushing with timeboxes [18] or attribute-based filtering. Denoting a
box query as a 4-tuple (tmin, tmax,vmin,vmax), which specifies ranges in
the time and value dimensions, we locate curve ci (the i-th time series)
with the condition that all points in ci within time range [tmin, tmax]
should lie within the given value range [vmin,vmax]. Fig. 1b shows an
example, in which curves c1 and c2 are excluded in the query results, as
some of their sample points are above vmax or below vmin in the given
time range. For queries with multiple timeboxes, the retrieved series
need to satisfy the conditions of all the timeboxes.

The angular query works in the same way as the timebox query,
but the range is specified in the time-angle instead of the time-value
domain. For each line segment in a curve, calculating its slope angle
involves an expensive arctan function, so we convert the angle-range
constraint into a slope-range constraint. Fig. 1c shows an example:
the angle-range constraint is specified by (tmin, tmax,θmin,θmax) shown
on the left, whereas the converted slope-range constraint is shown as
piece-wise line segments in the time-slope space shown on the right.
From the right figure, we can see that only curves c2 (yellow) and c3

(green) are retrieved as the query results.
A timebox can be regarded as a two-dimensional rectangular-range

query, and thus, some efficient search methods [47], e.g., orthogo-
nal range trees and grid structures, have been suggested. However,
Hochheiser and Shneiderman [19] quantitatively compared the per-
formance of various methods and found that sequential search still
outperforms others. With a careful analysis, they attributed the suc-
cess of sequential search to the early termination, i.e., the search can
stop whenever one data point is found out of range, whereas the other
methods need to examine every point in the timebox. Since the box is
movable and resizable, they further developed an optimized sequential
search algorithm [18] for providing rapid and incremental queries.

Curve Density Estimate (CDE). Given a list of 1D points {p1, · · · , pn}
sampled from an unknown probability density, the density at position x
estimated by kernel density estimation (KDE) is

f (x) =
1

n

n

∑
i=1

Kr(x, pi) (1)

where Kr is a kernel function and r is the bandwidth. A common

kernel function is the normal kernel Nr(x) = 1√
2π

e−
1
2
(x/r)2

. For two

discrete points, the normal kernel produces a distribution with two
peaks (Fig. 2a). However, when the two consecutive points are sampled
from a continuous time series, this distribution cannot faithfully reveal
the continuous change between successive points.

To tackle this problem, CDE introduces a 2D line
kernel along each line segment, i.e., consecutive
points pi and pi+1 in curve ci. Given an arbitrary
point x in the 2D space, let μμμ be the foot of the
perpendicular when projecting x onto the line seg-
ment, i.e., μμμ = x−|ννν · (x−pi)|ννν , where ννν is the unit vector perpendic-
ular to the line segment and towards x. The 2D line kernel at x is the
product of a 1D line kernel along the line segment (L1D

r ) and a normal
kernel (Nr) along the ννν direction perpendicular to the line segment:

Lr(x,pi,pi+1) = L1D
r (μ, pi, pi+1) ·Nr(|x−μμμ|) (2)

Fig. 1. Illustrations of four different lines query methods: (a) radius
nearest lines (RNL) query locates lines c1, c5, and c6 for query point
q1 and radius r, where k-nearest lines (KNL) query locates lines c3, c4,
and c5 for query point q2 and k = 3; (b) timebox query locates lines c3

and c4 within the box; and (c) angular query: user brushes in the time-
angle domain (left) and the computation is done in the time-slope domain
(right), in which continuous lines become piecewise line segments.

where μ , pi, and pi+1 are the 1D equivalents (defined along the straight
line through pi and pi+1) of the 2D points μμμ , pi, and pi+1, respectively.

The 1D line kernel L1D
r is a subtraction of two cumulative distribution

functions (CDFs) of the normal kernel:

L1D
r (μ, pi, pi+1) =

CDFr(μ, pi)−CDFr(μ, pi+1)

|pi+1− pi| (3)

where CDFr(μ, pi) is the integral of the normal kernel:

CDFr(μ, pi) =
∫ μ

pi

Nr(|t− pi|)dt. (4)

As a result, the estimated density is distributed evenly from one point
to the next (see Fig. 2b). The density at each point x is the summation
of the density from all individual line segments.

KDE often uses only the points within radius range r to estimate the
density while ignoring the other points. Similarly, computing the line
density needs to consider only the lines within the radius distance r from
x. Although KD-trees have been widely used for r-nearest neighbor
(RNN) search [41], only curve complexity heuristic (CCH) [31] KD-
trees developed for the search of nearest lines from a set of 3D curves.
In this work, we extend such trees to further support timebox and
angular queries of many time series.

4 METHOD

In this section, we first present an adapted CCH KD-tree [31], a line-
segment-based KD-tree, for exploring time-series data. Like the orig-
inal CCH KD-tree, we also fit each line (curve) with a small number
of straight-line segments, but we build our line-segment-based KD-
tree in the time-value-slope (TVS) space. Based on such a tree, we
can perform KNL and RNL queries similar to nearest points queries
in traditional point-based KD-trees [31]. In addition, we extend the
line-segment-based KD-tree in the TVS space with three techniques
for exploring large-scale time-series data: (i) an efficient density com-
putation, (ii) incremental timebox queries, and (iii) representative line

Fig. 2. Given a line defined by two points pi and pi+1, its density calcu-
lated by (a) normal kernel and by (b) line kernel.



Fig. 3. Overview of our tree construction: (a) a set of input curves with point samples (white) and split points (orange); (b) the KD-tree in TVS space
built for the input curves with the newly-added split points (yellow), the thickness of split planes’ borders (blue) indicates the level, where split planes
of thicker borders are in the upper (higher) levels of the KD-tree; and (c) the curve segment in each grid cell volume is fit by a straight-line segment.

selection. In the following, we detail the tree construction then present
the exploration techniques.

4.1 Pre-Processing
Given n time-series lines, our line-segment-based KD-tree is con-
structed in three steps, as illustrated in Fig. 3: (i) decompose each
line into segments; (ii) construct line-segment-based KD-trees; and (iii)
fit each segment with a straight-line segment.

Curve Decomposition. Considering each line in a given time-series
data as an ordered list of points {ppp1, · · · , pppm}, we first apply the classic
Ramer-Douglas-Peucker algorithm [50] with threshold ε to approx-
imate each line with a small number of straight-line segments. We
proceed by finding point pppi, which has the largest distance deviation
from the straight-line segment l that connects endpoints ppp1 and pppm.
If the distance deviation is less than threshold ε , all points between
ppp1 and pppm can be removed, as the whole line can be approximated
by l. Otherwise, we keep pppi and repeat the process recursively on
{ppp1, · · · , pppi} and on {pppi, · · · , pppm}, in which pppi is referred to as a split
point; see the orange points in Fig. 3a. A larger ε tends to remove more
points and the curve would have larger changes in shape, and vice versa.
By default, ε is set to one pixel unit in our experiment.

Tree Construction. We build our line-segment-based KD-tree in TVS
space by recursively bisecting the 3D axis-aligned bounding volume
of all line segments. Taking the whole TVS volume as the tree’s root,
the bisection has three steps: (i) find a candidate split plane for each
dimension in the volume using spatial median [51]; (ii) use the split
plane with the least query cost (defined by Lu et al. [31]) to divide the
current node into two child nodes; and (iii) divide the line segments
that intersect the split plane, and lengthen each of them to reach the
associated intersection point on the split plane. Such intersections (see
the yellow points in Fig. 3b) are also regarded as split points for better
curve fitting. The recursion stops when the cost of all candidate split
planes is less than zero. Since the split-plane selection accounts for the
query cost, the resulting tree is optimized as a nearest-line query.

Curve Fitting. After the tree is constructed, each time-series line
is represented by multiple straight line segments, each stored in a
corresponding cell. Such segment can be obtained by connecting the
two endpoints of the time-series line in the grid cell, or by projecting
the 2D point samples to a line segment with a principal component
analysis. We use the former method, since it is faster and induces less
error in most cases. Lastly, each leaf node contains six values per line
segment (i.e., two endpoints in the time-value space, a slope value, and
a line index), while each internal node records the split dimension and
the node’s bounding volume range (min and max) in the split dimension.
Fig. 3c shows all the fitted line segments in the TVS space.

4.2 Efficient Density Computation
Once a KD-tree is built, we can perform a per-pixel nearest line (NL)
query to construct the density field. For each pixel x in the time-value
space, we compute its density by performing an RNL query to gather

Fig. 4. Illustrating tree-traversal query and boundary-based filtering. (a)
Decompose the space covered by time series c1 to c5 with the tree shown
in (b); B1 to B7 denote the bounding volumes (grid cells) associated with
the tree’s leaf nodes. The blue box denotes a timebox query with a pair
of ghost ranges (red) on top and bottom. (b) Traversing the tree can
efficiently find all leaf nodes and lines (c1, c2, and c3) that intersect the
timebox. Next, boundary-based filtering employs the two ghost ranges to
filter the lines: we discard c1, since it intersects the bottom ghost range,
meaning that some of its points in [tmin, tmax] must be out of the timebox.

the line segments within radius r (see Fig. 1a) and then summing up
the contribution of each line segment calculated by Equation 2. Thanks
to the efficient RNL query, our method is even faster than the classical
splatting-based methods [6, 37] (see Sect. 5).

4.3 Rapid Incremental Range Query
To support timebox query and angular query, we define the associated
range query R as a six-tuple (tmin, tmax,vmin,vmax,smin,smax) in the
TVS space. Since timebox queries do not constrain angles, we set
smin as negative infinity and smax as positive infinity to skip the slope
dimension in timebox queries. Similarly, we set vmin as negative infinity
and vmax as positive infinity for angular queries.

Tree-Traversal Query. Given a six-tuple range query R, the tree-
traversal query aims to find all time series (lines) that intersect with
the TVS volume specified by R. Such a traversal starts from the root
and can be done very efficiently. At each internal node, we only need
to compare the node’s bounding volume range with R’s corresponding
range in the split dimension. Suppose the split dimension is in “value,”
we only need to compare the “value” range of the node’s bounding
volume and the “value” range of R: There are three cases:

• Case 1: If the node’s range is entirely in R’s range, we directly go
to all its leaf nodes and gather all the stored curve indices;

• Case 2: If the node’s range is partially in R’s range, we traverse
to each of its child nodes and further check each child node; and

• Case 3: If the node’s range is completely out of R’s range, we
stop the traversal of this node.

In Case 2, if a children node is a leaf node, we further need to check
if each of its contained line segments is inside R. Fig. 4a shows an
example that the bounding volume of leaf node B1 intersects R but not



Fig. 5. Illustrations of the incremental query update for three different
cases of modifying the query widget of a range query, from Ro to Rn. (a)
Case 1: when enlarging the query widget, we insert the lines in range
Rn−Ro. (b) Case 2: when reducing the query widget, we remove the
lines in range Ro−Rn but retain those that pass through the green ghost
range. (c) Case 3: when moving the query widget, we need to insert
the lines in Rn−Ri following Case 1 and then remove the lines in Ro−Ri
following Case 2, where Ri = Ro ∩Rn. For all three cases, we need to
remove lines that cross the red ghost ranges in the end.

all curves in B1 really intersect R, e.g., c4. Fig. 4b illustrates the whole
tree-traversal procedure. Once the traversal is done, we obtain a set of
lines (denoted as Ω̄) that intersects the given range query R.

Boundary-based Filtering. With tree-traversal query, we can obtain
Ω̄ for a given range query R. Yet, to fulfill a timebox/angular query, we
need to find lines that lie within R’s query volume for the entire time
range [tmin, tmax] of R. Hence, we need to filter Ω̄ by discarding the
unqualified lines, e.g., c1 for the blue timebox shown in Fig. 4a.

Our key idea is to make use of the efficient tree-traversal query to
quickly filter Ω̄; that is, we define a pair of ghost ranges (parallel to the
time axis) next to R’s query volume and discard any line in Ω̄ that inter-
sects these ghost ranges. For the case of timebox query (see Fig. 4a for
an example), we define ghost ranges (tmin, tmax,vmax,vmax + ε,−∞,∞)
and (tmin, tmax,vmin− ε,vmin,−∞,∞) with a small threshold ε; see the
two small red boxes in Fig. 4a. Then, we use tree-traversal query to
locate lines that intersect the ghost ranges. If a line in Ω̄ is found to
cross these ghost ranges, it means that a portion of the line is outside the
timebox for time range [tmin, tmax]. Hence, such line should be excluded
from the timebox’s query result. By doing so, we can obtain the final
query result Ω, which includes the desired lines in Ω̄. Though the time
complexity is O(logN + k) (N being the number of all line segments
and k, the number of line segments in Ω̄), the procedure is still very
fast, especially when configured with the incremental query update to
be presented later. Also, we can jointly query the lines in both ghost
ranges to improve performance. Fig. 4b shows an example, where c1

is discarded after this boundary-based filtering, since c1 crosses the
bottom ghost range (in red).

For the case of angular query, the above ghost ranges cannot work,
since the time-series lines in the slope dimension are discrete rather
than continuous. Hence, rather than having small ghost ranges attached
on the bounding volume of the range query R, we define the two ghost
ranges as (tmin, tmax,−∞,∞,smax,∞) and (tmin, tmax,−∞,∞,−∞,smin),
such that they extend to infinity and help to check if any line in Ω̄ go
out of R for the given time range of R.

Incremental Query Update. When the user resizes or moves the
query widget in the visualization interface that marks a range query
(timebox/angular query), we can perform an incremental query to
rapidly update Ω. Suppose the previous range is Ro and the new range
is Rn, their spatial relationship can be one of the following three cases

(see the corresponding illustrations in Fig. 5a-c):

• Case 1: Ro ⊂ Rn when enlarging the query widget;

• Case 2: Rn ⊂ Ro when reducing the query widget; and

• Case 3: Ro and Rn intersect by range Ri when moving the query
widget.

Assuming that the line segments are uniformly distributed in space [31],
searching for lines in the whole range Rn is slower than searching in
a small sub-range. Hence, we design a family of incremental query
mechanisms to handle the three cases between Ro and Rn.

For Case 1, we first find all lines that cross the range Rn − Ro
(see Fig. 5a) and add them to Ω. Since Rn−Ro is L-shaped, we break
its region into two regular boxes (by the dashed orange line shown
in Fig. 5a) before finding lines that intersect the boxes. Also, we set a
pair of ghost ranges (see the red boxes in Fig. 5a) to ensure the lines
are strictly inside Rn for the whole time range.

For Case 2, we find lines that cross Ro−Rn (again divided into two
boxes) and remove the retrieved lines from Ω. However, such a removal
might rule out some valid lines. Taking Fig. 5b as an example, it will
remove lines c1, c2, c4, c5, c6, and c7; among these lines, c1 and c2

fulfill Rn. To resolve this issue, we construct ghost range Rc at Rn’s left
or right border next to Ro−Rn; see the green box in Fig. 5b; then, we
can add back the lines that cross Rc but not the red ghost ranges as in
Case 1. In this way, we can retain c1 and c2.

Case 3 is a combination of Cases 1 and 2. Incremental query update
is done in two steps. First, we find the lines in range Rn −Ri and
insert them into Ω, following Case 1 (see the left side of Fig. 5c),
where Ri = Ro ∩Rn. Then, we follow Case 2 to remove the lines in
range Ro−Ri but retain those that pass through ghost range Rc. Note
again that for all three cases, we use the red ghost ranges to ensure all
resulting lines are strictly in Rn for the whole time range.

The time complexity is log(N)+k, which includes the cost of query-
ing N line segments and k set operations to insert or remove lines from
the query result Ω (k is the number of lines involved in the query).

4.4 Representative Lines Selection
Analysts often need to see representative time series (as individual lines)
to explore the local patterns in ranges of interest, whereas density-based
visualization inherently loses the information of individual lines. One
straightforward solution to address this issue is to cluster the time-series
lines in terms of similarity metrics [1]; however, such computation is
too expensive for interactive query response times.

Our goal is to find representative lines that follow major trends in the
data. Inspired by density-based edge-bundling [24], we assume that a
line can represent many time series well if it passes through high-density
regions as much as possible. On the other hand, each representative line
should be unique, in terms of revealing diverse trends of all the lines.
Here, we use the curvature differences to characterize the variation
between lines [52]. Also, a representative line should not be too short.
Accordingly, we propose a heuristic method to select k representative
lines by considering both their density scores and curvatures.

For each line retrieved from a given range query R, we compute its
density score by summing the density of all its occupied pixels:

ρi =
1

Li
∑
k

ρ(xi,k) (5)

where xi,k is the kth pixel located at the ith line, and Li is the length of
the line segment in the time axis. Meanwhile, we compute the shape
difference between two lines ci and c j by:

βi, j =
1

Li, j
∑
k
|κ(xi,k)−κ(x j,k)| (6)

where κ(xi,k) is the curvature at the kth pixel pk of the ith line, and Li, j
is the common length range of the ith and jth lines in the time axis.

To enable fast subsequent queries, we pre-compute the curvature
κ(xi,k) for each pixel point in every line and calculate ρi for each line



Fig. 6. Querying representative lines on a synthetic dataset with many time series. (a) An overplotting line graph consists of lines coming from three
groups whose representative lines are highlighted; (b) a density visualization reduces the visual clutter with three representative lines aligned with
the overall trends in the density field; and (c) we use the timebox widget (in blue) to query a set of lines and then find three representative ones. In (b
& c), the line indices (one to three) indicate a decreasing density order of the lines.

Fig. 7. The interface of our interactive exploration system KD-Box: (a)
Data panel for loading the data and specifying the data fields; (b) Main
view for showing the resulted density field; (c) Detail View for showing
the statistical information of the query results; and (d) Control Panel for
users to adjust the parameters in interaction and rendering.

segment, once the KD-tree is generated. With two user-provided param-
eters, i.e., length threshold τ and shape difference threshold λ , we find
representative lines for a given range R in two steps. After computing
ρi and βi, j for all the lines in R, we sort the lines in descending order
of their density scores and initialize a queue with the line that has the
highest score. Then, we pick the next line subject to two conditions: (i)
the curvature differences βi, j between the next line and those already
in the queue should be larger than λ ; and (ii) the length of the next line
should be larger than τ . We iterate this process until finding the desired
number of representative lines, which is three by default.

In our experiments, we found that setting τ and λ to (tmax− tmin)/2
and 0.1 respectively works well for most data, and both parameters
can be interactively adjusted by users. Fig. 6 shows an example on a
data set synthesized by moving each of three specified trend lines (see
the highlighted lines in Fig. 6a) vertically by a random value drawn
from a Gaussian distribution while perturbing each data point xi,k with
small Gaussian noise. The representative lines identified by our method
shown in Fig. 6b are the same as the ground truth in Fig. 6a. Fig. 6c
shows the representative lines for the timebox query, for which we
overlay the selected lines on the density field.

4.5 Interactive Exploration System
We implemented the methods presented above in KD-Box, a JavaScript-
based prototype web application for interactive exploration of time-
series data without any server-side components. Fig. 7 shows the user
interface of KD-Box, which has four parts. When a data set is loaded
from the Data Panel (Fig. 7a), an overview of the data is shown using
two coordinated views: the Main View (Fig. 7b) and the Detail View
(Fig. 7c), which, respectively, show the density field and the detail
of the corresponding representative curves and query widgets if users

specified. Also, users can hover on any information in the Detail View,
and the corresponding curve or widget will be highlighted in the Main
View, and vice versa. Further, users can customize the rendering layers,
specify parameters, and adjust color maps in the Control Panel (Fig. 7d),
while interactively exploring the data with the provided query tools. In
the following, we describe the rendering layers and query tools.

Rendering Layers. There are five rendering layers in the Main View:
the density field, the line graph of all time series, the line graph of the
queried lines, the density field of the queried lines, and the represen-
tative lines. For each query operation, the default layer is the density
field, while users can combine and order any layer with adjustable
transparency. For the selected density field, users can apply a different
color map selected in the control panel. After the user specifies a query,
the system will overlay the representative lines on the density field and
show the corresponding details in the Detail View by default.

Query Tools. We support querying a subset of lines by using four well-
known interactions, namely, timebox, angular query, mouse hover, and
attribute filtering. For the first two tools, please see the details in Sect. 3;
attribute filtering allows users to filter time series by specifying multiple
attribute values, whereas mouse hover allows the user to interact with
individual lines. To implement this feature, we reuse the efficient RNL
query with a radius of 3×3 pixels centered at the user’s cursor, while
allowing the user to enlarge the radius with the mouse wheel.

5 COMPARATIVE EVALUATION

We evaluate our technique in two aspects: line query and density
rendering, on a computer with an Intel Core i5-8400 CPU @ 2.8GHz,
32GB memory, running Google Chrome 89.

Datasets. We follow existing practices [16, 21] to generate synthetic
datasets with varied distributions. Based on the non-seasonal time-
series model [15], we synthesize a time series with two components:

vt = Tt +βWt , (7)

where vt is the value at the tth time step, Tt is the trend component
and Wt is the white noise. The trend component Tt is computed by
randomly selecting one from a list of seven trend distributions, such as
Gaussian, exponential, Poisson, linear, log, sine, and cosine functions,
and the parameters for white noise Wt and β are randomly generated.

To investigate how the performance of our method varies with the
different time-series data, we generated datasets by varying two param-
eters: the number of time series and number of time points in each time
series. It is done by fixing one parameter to 100 and varying the other
from 1 K to 10 K with a step size of 1 K and from 10 K to 100 K with a
step size of step 10 K. In total, we generated 38 datasets.

5.1 Line Query
We conducted a comparative evaluation of four selected methods by
performing (i) RNL, (ii) timebox query, and (iii) angular query using



Fig. 8. Boxplots on the line recall (a), line precision (b), query time (c,d,e),
and tree-building time (f) for the RNL search (r=0.02), timebox query, and
angular query on all datasets using the four query methods.

M randomly-generated query points for RNL, timeboxes, and angular
ranges for each data set, respectively. Here, we set M as 1,000 and
tested different r values for the RNL search, i.e., {0.01,0.02, · · · ,0.1}
relative to the normalized screen space ranged [0,1].

Methods. We compared our method with three methods: KD-Tree,
R-Tree, and sequential search. Among them, sequential search was
shown to perform better than range trees and hash tables for timebox
search [19], so we chose to implement it. To adapt point-based KD-
Tree [5] and R-Tree [4] for nearest line (NL) search, we pre-stored the
line index of each point in the leaf node and implemented them based
on the state-of-the-art JavaScript implementations [12, 32].

Measures. We quantitatively measure the quality and performance of
line query in three aspects: tree-building time, query processing time,
and query accuracy. For query accuracy, we follow Lu et al. [31] by
using two numerical measures line recall and line precision. Suppose

the set of retrieved lines is Ω̂ and the ground truth is Ω, line recall
measures the proportion of lines retrieved in the ground truth Ω:

line recall (LR) =
|Ω̂∩Ω|
|Ω| ,

which ranges from 0 to 1. A larger value indicates that more ground-
truth lines are found. Likewise, line precision measures the proportion

of correctly-retrieved lines in Ω̂:

line precision (LP) =
|Ω̂∩Ω|
|Ω̂| ,

which also ranges from 0 to 1. A larger value indicates that more

retrieved lines in Ω̂ are true nearest lines.

Fig. 9. Comparing the query time of our method and sequential search
in performing the RNL, timebox query, and angular query with different
parameters: (a) number of time series and (b) number of time sample
points in each line.

Fig. 10. Comparing the rendering time (a) and MSE (b) of our method
and DensePlot in rendering density fields with different parameters.

Result. To quantitatively evaluate the four methods, we computed the
averaged LR, LP, and query time with M query operations issued by
each of the four query methods on each dataset. The boxplots shown in
Figs. 8a-e summarize the three measures for the four methods.

The results show that our method achieves mean accuracies of 99.1%
and 99.9% for line recall and line precision, respectively, whereas the
mean line recall of KD-tree is only 80.9% and the mean line precision
of R-tree is only 90.3%. The major reason for the poor accuracy of
KD-tree is that it is built on sample points without considering the
continuous line information. R-tree has a similar issue that its stored
bounding boxes do not have accurate line ranges, thus including more
unqualified lines in the query result. In contrast, sequential search
always returns the ground truth, but it is 3 times slower for RNL query,
5 times slower for timebox query, and 15 times slower for angular
query than our method. Although our method is slower than KD-
tree and R-tree in the three query strategies, it is sufficiently fast for
supporting effective exploration [27], where the mean query time of
the three query strategies are all less than 16ms. Also, our method
takes less time to build the tree than KD-tree and R-tree, as shown in
Fig. 8(f). Considering all these results, we conclude that our method
is the best in achieving high accuracy with less computation cost in
offline pre-processing and online query.

As shown in Fig. 9, the query time of our method and sequential
search both increases with the number of lines and also the number
of time points, no matter which query strategy is used. Compared to
sequential search, our method is around 10x faster for RNL search, 10x
for timebox query, and 20x for angular query, when the number of lines
or the number of time points is 100 K. All of our queries finished within
300ms, which suffices efficient exploration of large time-series data.

Furthermore, comparing the query time of our three query strategies
reveals that angular query ranks the first (fastest), followed by timebox
query, and RNL query is the last. This is reasonable, since our RNL
query involves computing the distance from the query point to lines
and timebox query needs to check the intersection between lines and
the query box, while angular query does not need these operations.



Fig. 11. (a) Density visualization and representative lines of reading
behavior of all readers in an interactive article on the web. (b) Putting
a timebox for lower scroll position early in the overall time range, we
can reveal readers who scrolled down very early and quickly produce a
density field for the reading behavior of these readers. Note that both
density fields (a & b) are encoded in the same color scale.

5.2 Density Rendering
To evaluate the rendering performance and quality of our density field,
we select DensePlot [30], the state-of-the-art CPU implementation of
DenseLine [37], as the rendering groundtruth. As the tree construction
is necessary for supporting interaction, we only measure the rendering
time and mean squared error (MSE) between our results and those from
DensePlot. The display size of all density fields is 1200×600 pixels.

Results. Fig. 10a summarizes the rendering time of the two methods.
We can see that our method is only a bit slower than DensePlot when
the number of time series is less than 5 K but then it is much faster.
Moreover, its rendering time increases very slowly, where the maximal
rendering time is around 500ms. The reason is that our method is an
image-order approach and its complexity is regardless of the number
of time series or time points. Nonetheless, our density field is highly
accurate, where the MSE error is less than 0.15% as shown in Fig. 10(b).
Thus, we conclude that our method can produce almost accurate and
high-quality density fields much faster.

6 DEMONSTRATION OF KD-BOX

In this section, we present three demonstrations on real-world data to
show the interactions in KD-Box. We explore these demonstrations
through hypothetical user scenarios to show how one may use our tool.
We study large time-series data from online reading patterns (Sect. 6.1),
hard-drive statistics (Sect. 6.2), and temperature data (Sect. 6.3).

While KD-Box only supports a subset of interactions in previous
systems such as TimeSearcher [18], it is able to handle larger datasets.
Therefore, we focus the demonstration cases on the data aspects that
are enabled by KD-Box’s scalability.

6.1 Discover Reading Patterns of Beat Basics
This demonstration case explores the reading behaviors of Beat Basics2,
an interactive article that explains the differences between 3/4 and 6/8
beats. Conlen et al. [10] characterized the interaction patterns in this

2idyll-lang.org/gallery/beat-basics

Fig. 12. (a) Density field visualization and representative lines for the
temperature of 92K hard drives over six years. (b) Overlaid density
and representative lines for long-lived hard drives selected by the gray
boxes. The overall density field and the selected ones are encoded by
the yellow-green-blue and yellow-orange-red color scales, respectively.

article using visualizations of recorded activities. They published the
data they collected to conduct their analysis. The dataset has 4430 time
series, each representing the reading behavior of a user in a session
and recording their scroll position from opening to closing the article.
Conlen et al. used a density visualization overlaying lines in low opacity.
In this naive representation, each line has the same opacity. Therefore,
if it is set too low, low-density areas disappear. If it is set too high,
the density tops out too quickly. Moreover, this representation leads to
visual artifacts of steep lines as we discussed in Sect. 3.

We load the dataset into KD-Box and generate the density visualiza-
tion shown in Fig. 11. The horizontal axis denotes the reading time and
the vertical axis denotes the scroll position in the article. The reading
time ranges from 0 to 3.3 minutes and the scroll position ranges from
0% (top of the article) to 100% (bottom of the article). The density
visualization (Fig. 11a) shows a high-density pattern on top-left, which
makes sense, as we expect readers to start reading from the top.

Interestingly, some high-density areas appear at lower scroll posi-
tions early in the reading. Investigating the matter further using a brush
query (Fig. 11b) shows that some readers simply scroll down immedi-
ately and some start from the middle of the article. The brush query
only selects a few hundred lines, so we can render all selected lines
(and hide the full density using the control panel shown in Fig. 7d). As
Fig. 11b shows, there are too many readers with such behavior (�1K),
so we may switch to a density representation. The representative lines
can reveal some other common reading patterns, e.g., a user who scrolls
down before going back up (also identified by Conlen et al. [10].

6.2 Sensor Data from Hard Drives
Sensors are one of the most common sources of time-series data, pro-
viding measurements on environments and electronic systems over
time. As an example of sensors in electronic systems, in the second
demonstration case, we explore the statistics of more than 92K hard
drives. Backblaze, a cloud storage provider, publishes detailed statistics
about the hard drives in their data centers every quarter of the year3.

3www.backblaze.com/b2/hard-drive-test-data.html



Fig. 13. (a) A density visualization of a weather dataset in the U.S. obtained from the ACIS web services. (b) The raw lines in the dataset when all are
visualized together. (c) Density visualization for places with consistently high temperatures in January selected by a Timebox and an angular query;
see the gray boxes overlaid on the left. The overall density field and the selected ones are encoded by the yellow-green-blue and yellow-orange-red
color scales, respectively.

Fig. 12a shows the time series of the hard drive temperature (SMART
194) for a random sample of 92K time series out of over 160K in
the full dataset. Note that our method can handle larger amount of
data but it is currently limited by the browser (see Sect. 7). Yet, the
visualization in Fig. 12a already displays an aggregation of �2.4M
individual records, from which we can see that no hard drive goes
above 55◦C and most stay between 20◦C and 30◦C. A non-density
version of the same data would be a highly-cluttered visualization.

By drawing a brush at the beginning of the recording in 2014, we
can see that none of the first-generation hard drives are still in operation.
We may want to see hard drives that have been in operation for the
last four years. Setting a pair of timeboxes four years apart can filter
the data and locate 14K time series (Fig. 12b). The density of these
selected lines shows that most of these long-lived hard drives stayed
within a narrower temperature band than the rest. Also, the majority
of these hard drives stayed at lower temperatures. This insight could
provide an indicator for better maintenance of the hard drives.

6.3 Patterns in Large-Scale Temperature Data
In this case, we explore an environmental sensor dataset obtained from
the Applied Climate Information System (ACIS) Web Services 4, which
records the daily temperature of 6187 public weather stations in the
United States in 2019.

The density visualization without filters in Fig. 13a shows a clear
seasonal pattern where average temperatures are higher in the summer.
This pattern is not too surprising, as the United States is in the northern
hemisphere. While this trend is also visible when simply rendering the
lines (Fig. 13b), the density visualization reveals that the majority of
weather stations have higher variability than how the envelope implies.
The representative lines also show this broader trend in the data.

We may be interested in the temperature trends of places with con-
sistently high temperatures in the first few months of the year. To do
so, we can create an angular query to look for time series with small
steepness (slope) in the first month of the year and a brush query at
high temperatures. The density visualization (Fig. 13c) shows that
the temperature of these places is generally higher and stays rather
consistently warm throughout the year, which is also confirmed by
the representative line overlaid to the selected density field. During
the summer months, the temperatures for these places are similar to
the majority of all temperatures in the US. The Detail View (Fig. 7c)
shows that the representative lines in this selection are for places in
the south or near the ocean (i.e., Florida, California coast, and Hawaii).
Being close to the ocean receive huge heat capacity, leading to a more
constant temperature.

Similarly, we might want to see the temperature curves for places
with consistent (without restricting the range) temperatures in other
months. We can move the angular filter along the time axis to update
the query. Since KD-Box gives a fast query response within 40 ms, we

4www.rcc-acis.org/docs_webservices.html

can see how temperature develops for the selected places and notice
that places with lower temperatures generally have higher temperature
variability. The interactions are fast because we can update the query
results incrementally (Sect. 4.3).

7 DISCUSSION AND FUTURE WORK

Hochheiser et al. [18] showed that timebox queries are a valuable
tool for exploratory analysis of time-series data. Their system Time-
Searcher [18, 19] offers interactive response times for small time-series
datasets. However, there are two issues related to scalability for large
time-series data. First, overdraw and visual clutter can make the data
overview less meaningful. Constraints can help to filter time series in
the display but doing so only addresses part of the problem, as many
interesting queries may not be easily selectable. In this work, we ad-
dress the issues through an efficient density visualization that shows
all time series and the time series that match the query constraints.
Second, Hochheiser et al. [18] note that 75% of query time is spent
on query evaluation as opposed to rendering. The line-segment-based
KD-tree we incorporated into KD-Box enables fast queries over larger
data while still being highly responsive.

There are three major limitations related to our current implementa-
tion of KD-Box. First, due to the memory limit imposed by browsers,
we can at most support efficient exploration of 100 K time series. To
address this issue, we plan to extend our line-segment-based KD-tree to
work in a progressive way [46], in which data is streamed into memory
in chunks. Second, our representative line selection is based on a heuris-
tic method that might not capture all interesting trends for complex
data. We plan to extend a fast density-based clustering method, mean-
shift clustering [9, 14] into curve-based density fields for identifying
representative lines. Last, our KD-Box only focuses on the core func-
tionality of timebox and angular queries; while future versions of our
system should support the full gamut of features in TimeSearcher [19],
including the leaders and laggards, query inversion, and variable-time
boxes.

There are two future work possibilities. One is to extend our system
to support interactive analysis of streaming time-series data in various
domains such as finance, mobile, and IoT. Second, density-based repre-
sentations have been used for visualizing various types of data [20] such
as trajectory, graph, and high-dimensional data, whereas most of them
suffer from similar challenges as time-series data. In the future, we will
extend our line-segment-based KD-tree to explore these different data
for some other analysis tasks.
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