
Dead or Alive: Continuous Data Profiling for Interactive Data Science

Will Epperson , Vaishnavi Gorantla , Dominik Moritz , Adam Perer

Fig. 1: In AutoProfiler, data profiles update whenever the data in memory updates and are sorted with the last updated dataframes at

the top. In this example, a user has (1) loaded a dataframe about housing prices and sees the profile for df in the sidebar. (2) The user

then investigates the price column and exports a chart to code so they can persist this chart and tweak the code for follow-up analysis.

Abstract— Profiling data by plotting distributions and analyzing summary statistics is a critical step throughout data analysis. Currently,

this process is manual and tedious since analysts must write extra code to examine their data after every transformation. This

inefficiency may lead to data scientists profiling their data infrequently, rather than after each transformation, making it easy for them to

miss important errors or insights. We propose continuous data profiling as a process that allows analysts to immediately see interactive

visual summaries of their data throughout their data analysis to facilitate fast and thorough analysis. Our system, AutoProfiler, presents

three ways to support continuous data profiling: (1) it automatically displays data distributions and summary statistics to facilitate data

comprehension; (2) it is live, so visualizations are always accessible and update automatically as the data updates; (3) it supports follow

up analysis and documentation by authoring code for the user in the notebook. In a user study with 16 participants, we evaluate two

versions of our system that integrate different levels of automation: both automatically show data profiles and facilitate code authoring,

however, one version updates reactively (“live”) and the other updates only on demand (“dead”). We find that both tools, dead or alive,

facilitate insight discovery with 91% of user-generated insights originating from the tools rather than manual profiling code written by

users. Participants found live updates intuitive and felt it helped them verify their transformations while those with on-demand profiles

liked the ability to look at past visualizations. We also present a longitudinal case study on how AutoProfiler helped domain scientists

find serendipitous insights about their data through automatic, live data profiles. Our results have implications for the design of future

tools that offer automated data analysis support.

Index Terms—Data Profiling, Data Quality, Exploratory Data Analysis, Interactive Data Science.

1 INTRODUCTION

In recent decades, data analysis is no longer bottlenecked by the tech-
nical feasibility of executing queries against large datasets, but by the

• All authors are with Carnegie Mellon University. Emails: willepp@cmu.edu,
vaishnag@andrew.cmu.edu, domoritz@cmu.edu, adamperer@cmu.edu.

Manuscript received xx xxx. 201x; accepted xx xxx. 201x. Date of Publication
xx xxx. 201x; date of current version xx xxx. 201x. For information on
obtaining reprints of this article, please send e-mail to: reprints@ieee.org.
Digital Object Identifier: xx.xxxx/TVCG.201x.xxxxxxx

difficulty in choosing where to look for interesting insights [5]. Interac-
tive programming environments such as Jupyter notebooks help since
they support fast, flexible, and iterative feedback when programming
with data [2, 33]. However, while these coding tools were designed
to track the state of program execution and variables for debugging,
they were not inherently designed to track how data is manipulated and
transformed. This forces users to manually make sense of and write
additional code to explore their data.

Exploratory Data Analysis (EDA) is critical to understanding a
dataset and its limitations and is a common task at the beginning of a
data analysis [47, 49]. Yet the manual effort required to construct data

https://orcid.org/0000-0002-2745-4315
https://orcid.org/0009-0007-1764-6763
https://orcid.org/0000-0002-3110-1053
https://orcid.org/0000-0002-8369-3847
mailto:reprints@ieee.org
mailto:adamperer@cmu.edu
mailto:domoritz@cmu.edu
mailto:vaishnag@andrew.cmu.edu
mailto:willepp@cmu.edu

profiles for EDA takes up a significant part of data analysts’ time: recent
surveys of data scientists show that they spend almost 50% of their time
just cleaning and visualizing their data [3]. Since data profiling is so
time intensive, it is easy for users to skip over important trends or errors
in their data. This can lead to negative downstream consequences when
this data is used for modeling and decision-making [41]. In particular,
many data quality issues are potentially silent: models will still train or
queries will execute, but the results will be incorrect [16]. For example,
in the data profile of apartment prices in Figure 1 we can see that some
apartment prices have negative values. If these values are not addressed,
analyses or models that use this data may lead to wrong decisions.

We propose continuous data profiling as a process that allows an-
alysts to immediately see interactive visual summaries of their data
throughout their data analysis to facilitate fast and thorough analysis.
To explore how automated tools can best support continuous data pro-
filing, we have built a computational notebook extension AutoProfiler
that tightly integrates data profiling information into the analysis loop.
AutoProfiler maintains the advantages of the interactive notebook pro-
gramming paradigm, while giving users immediate feedback on how
their code affects their data. This tightens the feedback loop between
manipulating data and understanding it during data programming.

We explore three main features in AutoProfiler. First, it automati-
cally displays profiling information about each dataframe and column
to facilitate data understanding. By showing data distributions and
summaries, AutoProfiler jump-starts a user’s EDA. Second, when the
data in memory updates, the profiling information updates accordingly.
“Live” updates in user interfaces have been shown to reduce iteration
time [27]; with AutoProfiler we apply this concept to data profiling to
understand how it helps facilitate data understanding. Third, although
AutoProfiler eliminates the repetitive work of authoring data profiling
code, users still need to be able to conduct flexible follow-up analysis
and persist interesting findings in their notebook [40]. AutoProfiler
supports this by authoring code for the user through code exports to
help users quickly select subsets, find outliers, or author charts.

We present two complimentary evaluations of AutoProfiler. In a
user study with 16 participants, we evaluate two levels of automated
assistance to see how different versions of the tool help users find errors
and insights in their data. Half of the participants used AutoProfiler
(a “live” profiler) and the other used a version that presents the same
information but in a static, inline version (which we denote as “dead”).
In this evaluation, we found that users experience similar benefits from
both versions of the tool, “dead” or “live”, and generate 91% of findings
from the tools as opposed to their own code. Participants found live
updates intuitive and felt it helped them verify their transformations
while those with static profiles liked the ability to look at past visual-
izations. Furthermore, participants described how the systems sped up
their analysis and exports facilitated a more fluid analysis. In our sec-
ond evaluation, we conducted a long-term deployment of AutoProfiler
with domain scientists to use the system during their analysis. These
users described how the “live” system enabled them to find and follow
up on interesting trends and how AutoProfiler facilitated serendipitous
discoveries in their data by plotting things they might not have checked
otherwise. We discuss how future automated assistants can build on
AutoProfiler to augment data programming environments. In summary,
our paper makes the following contributions:

1. We demonstrate the benefits of continuous data profiling with
AutoProfiler, which supports data programming with automatic,
live profiles and code exports.

2. We evaluate this tool in a controlled study and demonstrate how
continuous profiling helps analysts discover insights in their data
and supports their workflow.

3. We also present a longitudinal case study demonstrating how
AutoProfiler leads to insights and discoveries during daily analysis
workflows for scientists.

2 RELATED WORK

Our work builds on prior literature on assisted data understanding, live
interfaces, and linking GUI and code interfaces.

2.1 Data understanding is critical yet cumbersome
Understanding data and its limitations has long been an important, but
often overlooked, part of analysis. Tukey was an early advocate for plot-
ting distributions and summary statistics to get to know your data before
confirmatory analysis (hypothesis testing) began [47]. Current best
practices taught in introductory statistics courses still emphasize the
importance of starting analysis with summaries of individual columns,
such as distributions and descriptive statistics, before moving on to plot
combinations of columns or investigating correlations [42]. Recent re-
search has highlighted how with the increasing emphasis on developing
AI models, people often undervalue data quality leading to negative
downstream effects [41]. Multiple surveys of production data scientists
describe the difficulty and time spent on data understanding, profiling,
and wrangling [3, 19, 24]. For example, a recent Anaconda foundation
survey described that data scientists self-reported spending almost 50%
of their time on data cleaning and visualization [3].

Data understanding is difficult because of a variety of factors, includ-
ing that data updates quickly in production environments, so automated
methods and alerts have a high number of false positives [43], current
popular tools require manual data exploration and become messy [33],
and as datasets have grown, there are a large number of issues to check
for. Prior systems in the visualization community have addressed parts
of this space such as comparing data over time as models are trained
on subsequent data versions [18] or methods for cleaning up notebooks
during analysis [14]. However, more work is needed to understand how
tools can facilitate discovering data and potential quality issues before
they propagate to downstream models or analyses.

2.2 Prior assisted and integrated EDA tools
Prior visualization systems aim to automate the visual presentation of
data to speed up data understanding. In general, this automation helps
alleviate the burden of specifying charts so that users can focus more
on insights rather than how to produce a specific chart [15]. Some
systems automate visual presentation and then rank charts according
to metrics of interest such as high correlation [8], charts that satisfy a
particular pattern in the data [45], or contain attributes of interest [50].
Closely related to our work is the Profiler system, which checks data for
common quality issues such as missing data or outliers, and presents
potentially interesting charts to the user [20].

However, many of these systems exist in standalone tools, making
them difficult to integrate into flexible data analysis workflows in pro-
gramming environments like Jupyter notebooks [2]. Other systems
have explored how to integrate visualization recommendations in the
notebook programming context as well through visualization callbacks,
libraries, embedded widgets, and similar notebook search [26, 34].
Lux [25] and other open source tools [1, 6, 30, 31, 39] show EDA infor-
mation on demand for individual Pandas dataframes. While Lux uses
“always on” visualization recommendations to overwrite the default ta-
ble view for pandas dataframes, users must still ask for visualizations by
calling a dataframe explicitly. Diff in the Loop [48] presents a paradigm
for automatically visualizing the differences between dataframes after
each step in an analysis. Although these prior systems use automatic
visualization, they still require the user to manually ask for this in-
formation after each data update and often present an abundance of
information that can be difficult to compute in reactive times and for
users to parse quickly. With AutoProfiler, we explore the benefits and
design constraints around coupling automatic visualization with live
updates and code authoring on the user’s behalf.

2.3 Liveness in user interfaces
Fast iteration on data and models is a key element to effective data
science [11, 43]. The fast, incremental feedback that users receive in
Jupyter notebooks is part of the popularity of the platform [10, 33],
yet the default presentation of data feedback in Jupyter is limited to a
handful of rows. “Liveness” in user interfaces reduces iteration time
through reactive updates [27], such as in spreadsheets [17]. Prior studies
of liveness in data science tools have compared live interfaces to REPL
(read-eval-print-loop) interfaces like Jupyter and found users like the
responsiveness and clean coding that live interfaces afford [7]. Inspired

by the affordances of live, reactive updates, AutoProfiler evaluates how
automatically updating data profiles after a user changes their data can
help reduce iteration time during analysis. When using AutoProfiler
in Jupyter, users must still explicitly execute their code to manipulate
the data, thus it is not a completely “live” environment. However, data
profiles reactively update when data changes.

2.4 Linking code and GUI interactions
There is a tradeoff between tools that support using code to interact with
data or direct manipulation. Programming languages are flexible and
expressive, yet GUIs are responsive and easy to use [2]. Prior systems
in the notebook setting have bridged this gap by writing interactions
with a chart [51] or widget [22] back to the notebook automatically.
This allows users to reuse analysis code and preserves the steps of
their analysis. Selection exports in AutoProfiler serve a similar purpose
of facilitating drill down into rows of interest in a dataset. Our code
authoring approach differs from prior systems since we only write code
to the notebook explicitly when the user asks, rather than implicitly
after every interaction to avoid polluting the user’s notebook.

Beyond their flexibility, programming languages remain popular
for data science because they allow users to reuse old analysis code
for new purposes [21], or use analysis “templates” to help users go
through the same steps of analysis for similar tasks [10]. AutoProfiler’s
template exports serve a similar purpose to author code in the notebook
and support follow-up analysis for tasks like customizing a plot, doing
outlier analysis, or investigating duplicates.

3 DESIGN GOALS

We developed the following design principles to inform our system
requirements and design:
G1: Automatic & Predictable: Basic data profiling information should

be visualized automatically without any need for extra code in a
consistent manner.

G2: Live: When the data updates, so should all visualizations of it.
This prevents “stale” data visualizations in a notebook and allows
data profiles to be accessible throughout an analysis.

G3: Non-intrusive: Since users are writing code to interact with their
data, automatic visualization should not interfere with their flow.

G4: Initiate EDA: Data profiles should present a starting point for
understanding each column, which can inform follow-up analysis.

G5: Persistence: Tools should support writing findings to the notebook
to enable reproducible and shareable analysis.

G1 and G2 were motivated by the manual EDA which is the current
status quo in notebook programming. We build on prior techniques
in live interfaces [27] and automatic visualization [15, 25] to speed up
the data profiling process and enable continuous data profiling. This
eliminates the need to write repetitive profiling code to understand
dataframes after each update. Importantly, we show the same profiling
information for each type of column and visualize the data “as is” in
order to facilitate finding issues (G1). With live updates, we situate
our profiler alongside the programming environment rather than inline
(G3) so that it does not take programmers out of their analysis flow [12].
This also helps declutter the programming environment since most
preliminary visualization can be done in the sidebar. We make the
design choice to show univariate profiling information to help users
jump-start their EDA process (G4). Previous profiling systems often
require scrolling to look through multiple pages of charts [25, 30],
making it hard to find interesting problems or insights. Our goal is to
facilitate rapid data understanding with data profiles, then allow users
to do further custom analysis by handing off their analysis back to code
through exports. Code exports also facilitate saving findings such as
charts or code snippets to the notebook so that notebooks can be shared
and reproduced (G5), a core goal in notebook data analysis [40].

4 CONTINUOUS DATA PROFILING WITH AutoProfiler
AutoProfiler provides data analysts rapid feedback on how their code
affects their data to speed up insight generation. The system fits into
a common existing workflow for analysis: using Pandas in Jupyter.

Pandas is the most popular data manipulation library in Python, with
millions of downloads every week [29]. Likewise, computational note-
books in Jupyter have become the tool of choice for data science in
Python [33]. AutoProfiler focuses on Pandas users in Jupyter with the
goal that features that support this workflow will generalize to other
dataframe libraries such as Polars [36] or Arrow [4], as well as other
notebook programming environments. The AutoProfiler system has
three core features that enable continuous data profiling: automatic
visualization (§ 4.1), live updates (§ 4.2), and code exports (§ 4.3).

4.1 AutoProfiler shows EDA automatically
AutoProfiler detects all Pandas dataframes in memory and presents
them in the sidebar of the notebook. Each dataframe profile can be
shown or hidden, along with more information about each column.
This allows users to drill down into dataframes and columns of interest
to see more information, providing details on demand. By situating
AutoProfiler in the sidebar it also allows users to simultaneously look at
both summary data profiles of their data in AutoProfiler and the default
instance view inline from Jupyter.

We use the Pandas datatype of the column to show corresponding
charts and summary information. We categorize the Pandas datatypes
into semantic datatypes of numeric, categorical, or timestamp columns
similar to previous Pandas visualization systems [9, 25]. Column pro-
files for each of these three data types are shown in Figure 2. Each
column profile has three core components:

1. Column Overview which contains the name, data type, a small
visualization, and the percentage of missing values.

2. Column Distribution which is shown by clicking on the overview
to reveal a larger, interactive visualization of column values.

3. Column Summary that has extra facts about a column such as the
number of outliers or duplicate values.

The overview, distribution, and summary shown depend on the data
type of the column. Furthermore, the distribution and summary can be
toggled on and off to show more details on demand [44]. This is impor-
tant for large dataframes with many columns, or when there are many
dataframes in memory to prevent unncessary scrolling. Many visual
elements show hints on hover to further prevent visual clutter, provid-
ing further details on demand. Our core charting components were
adapted from the open-source Rill Developer platform which shows
data profiles for SQL queries [38]. We use the same visualizations in
AutoProfiler with extra summary information and linked interactions to
connect the profile to the notebook.

Quantitative Columns: For quantitative columns like integers and
floats, we show a binned histogram so that users can get an overview of
the distribution of the column. This histogram is shown in the column
overview as a preview; a larger and interactive version is presented
upon toggling the column open. On hover, users can see how many
points are in each bin. We also show numerical summary information
like the min, mean, median, and max of the column. This is similar
to what is presented in the describe() function in Pandas to give a
numeric summary of a column. In Figure 2 (left), we demonstrate
this information for a price column where we can see that some of the
prices in this distribution are negative, a potential error that should be
inspected during analysis.

If users want to see more information, they can toggle the summary
to see potential outliers, whether the column is sorted, and the number
of positive, zero, and negative values. We use two common heuristics
to detect outlier values. The first is if a value is greater than 3 standard
deviations from the mean; the second is if a point falls outside of
1.5 ⇤ IQR away from the first or third quartile. Both forms of outlier
detection code can be exported to code which allows users to investigate
potential outliers more or change these thresholds for classifying the
outliers with their code manually.

Categorical Columns: For categorical or boolean columns, we
first show the cardinality of the column in the overview to let users
understand the total number of unique values. Once toggled open, the
distribution view shows the frequency of the top 10 most common
values. This is similar to the commonly used value_counts() function in

Fig. 2: AutoProfiler shows distributions and summary information depending on the column type. For quantitative columns, we show a binned

histogram along with summary statistics. On hover, the user can see the count in each bin or export the selection to code. We also show a summary

with extra information like potential outliers that can be exported to code. For categorical columns like strings or boolean values, we show up to the

top 10 most frequent values. On click, the selection can also be exported to code. For temporal columns, we show the count of records over time

and the range of the column.

Pandas which shows the count of all unique values. In the categorical
summary, we show extra information about the character lengths of
the strings in the column along with a more detailed description of
the column’s uniqueness. This uniqueness fact can be exported to
code which lets users inspect duplicated data points. Once again, users
can export a selection to code in the notebook to quickly filter their
dataframe. For example, in Figure 2 (center) we show the information
for the categorical column “county”. This column has some default
values of "---" that seem like an error, so a user can click “Export
rows to code” to have the code df[df.county == "---"] written to their
notebook and can investigate these rows further. Once this new code
is written to the notebook, the user can look at this subselection in
AutoProfiler or with their own Pandas code.

Temporal Columns: Our last semantic data type is for temporal
columns, where we also show a distribution overview so users can see
the count of their records over time. In the larger distribution view,
users can hover over this chart to see the count of values at a particular
point in time. We also show the range of the column and if the column
is sorted or not. Users can drag over a selection of the column to
zoom into the time range more in the visualization. We plan on adding
selection exports to temporal columns in the future. In Figure 2 (right),
we show the profiling information for a date column where a user can
observe that the records in their dataset span 17 years, however are not
evenly distributed with large spikes in certain years such as early 2012.

4.2 Live Data Profiles
Beyond showing useful data profiling information just once, AutoPro-
filer updates as the data in memory updates. Once a new cell is executed,
AutoProfiler recomputes the data profiles for all Pandas dataframes in
memory and updates the charts and statistics as necessary in the inter-
face. With live updates, AutoProfiler always shows the current state of
all dataframes currently in memory in the notebook, allowing users to
quickly verify if transformations have expected or unexpected effects
on their data. Figure 3 shows this update when a string column is parsed
to numeric. Here, Pandas initially parses this column as an object data
type but when the user turns the column into an integer the distribution
and summary information is updated. Live updates help users verify
a wide range of transforms. For example, after updating the types of
columns, applying filters, or dropping “bad” values.

AutoProfiler has several UI elements to help users track and assess
changes after updates. The first is that when a user hovers over a
column in any dataframe, if other dataframes have columns with the
exact same name they are highlighted. For example, if a user takes
the dataframe df, filters it to df_filtered, and then hovers on the Price
column the linked highlights help the user make a visual connection
between the two Price columns. With automatic dataframe detection
and visualization, there can potentially be many dataframes in memory

as users manipulate their data over an analysis. AutoProfiler supports
sorting dataframe profiles to find those of interest. By default, the most
recently updated profiles are shown at the top of the sidebar. A user
can also sort alphabetically by the dataframe name. Furthermore, users
can pin any profile so that it always appears at the top of the sort order.

Dataframe profiles are typically only shown for dataframes explicitly
assigned to a variable with one exception: if the output from the most
recently executed cell is a Pandas dataframe we will compute a profile
for it with the name “Output from cell [5]”. On the next cell execution,
these temporary profiles are removed. This fits into a common note-
book programming workflow where users display their dataframe after
making a transformation to see how the data has changed.

4.3 Exports to code
In addition to interactive data profiles, AutoProfiler assists users in
authoring code. AutoProfiler facilitates code creation in two ways:
selection and template code exports. For both of these, a user clicks
on a button or part of a chart and AutoProfiler writes code for them in
the notebook below the user’s currently selected cell. All code export
snippets are pre-built into AutoProfiler and produce the same code
snippet for each task with the dataframe and column names filled in so
the code is ready to execute in the notebook.

Selection and template exports only differ in the kind of code they
produce. Selection exports allow users to export selections from charts
to help them filter their data, as mentioned in § 4.1. For example,
Figure 2 (left and center) demonstrates how a user can export selections
from categorical and numeric charts to quickly filter their data. This
helps users more quickly iterate on ideas during analysis to spend less
time writing simple code and proved very popular in our user study.

AutoProfiler authors more complex code like charts or code to detect
outliers with template exports. Code exports for these tasks are still
relatively simple, only exporting up to 10 lines of code. However, this
saves users from having to remember how to author a chart themselves
or compute outliers. Users can then easily edit this code, for example
to customize their visualization or change the threshold for an outlier.
Prior work has discovered how data scientists often re-use snippets of
code across analyses to help them speed up their workflows [10, 21].
AutoProfiler’s exports serve as a form of these pre-baked “templates”
for analysis steps. The other benefit of this type of export is that it helps
preserve analysis in the notebook in the form of code, which supports
more replicable analyses in notebooks, a common goal [35].

This linking between analysis in a visual analytics tool and notebook
code has been introduced in previous systems such as Mage [22] and
B2 [51]. Our goal here is similar: to support tight integration between
GUI and code. However, our approach differs slightly in that we only
write code to the notebook when the user explicitly clicks a button to
prevent polluting the user’s working environment.

Fig. 3: AutoProfiler updates the data profiles shown as soon as the data

updates. In this example, Pandas parses the sqft column as a string

type since some of the values initially have strings in them. Once the

dataframe df updates in memory, AutoProfiler will update the profile

shown. This way the user can see their transformation was successful,

inspect the distribution of sqft, and even notice that the number of nulls

increased by 0.3% after this parse.

4.4 Implementation and Architecture
AutoProfiler is built as a Jupyter Lab extension to augment a normal
interactive programming environment with a data profiling sidebar.
Figure 4 shows the components involved in a example live update loop.
When a user executes new code, the kernel sends a signal that a cell
was executed (step 1). AutoProfiler then interacts with the kernel to get
all variables that are Pandas dataframes, and requests data profiles for
each of these variables (steps 2 - 4). When a user requests to export
code, a new cell is created with the code (step 5). This is only a UI
interaction, and when the user executes the generated cell, the update
loop will trigger again. Whenever the kernel is restarted, the dataframes
in memory are cleared so the profiles in AutoProfiler reset.

As a Jupyter extension, AutoProfiler can be easily installed as a
Python package and included in a user’s Jupyter Lab environment. This
easy installation has proven very popular with users of our system. The
frontend code for AutoProfiler uses Svelte [46] for all UI components.
Our code is open-sourced and available for use 1 .

All profiling functions are written in Python and execute code in
Pandas. Pre-binning distributions in python makes serialization faster
to avoid serializing entire dataframes. Since our profiling happens
in Pandas, the performance of AutoProfiler generally scales with the
capabilities of Pandas. Anecdotally, we have used AutoProfiler during
analyses with dataframes with hundreds of thousands of datapoints and
updates remain responsive.

The scalability of our approach is primarily impacted by two main
considerations: the number of columns in each dataframe and number
of dataframes in memory. Pandas can still execute a single query
relatively quickly for dataframes with up to millions of datapoints, and
we consider a full benchmarking of pandas queries outside the scope
of this work. Since requests to the Jupyter python kernel are currently

1https://github.com/cmudig/AutoProfiler

Fig. 4: AutoProfiler profiling workflow. Data profiles are computed reac-

tively when a user executes new code. Profiling is done in the kernel to

speed up performance and avoid serializing the entire dataframe.

executed serially, larger requests for dataframes with many columns or
more dataframes in memory make updates slower. The AutoProfiler UI
is not affected by the size of the underlying data since the queries return
binned data counts or summary statistics so the UI remains responsive,
it simply takes longer to fetch new data for larger or more dataframes.
We have included several performance tweaks to make AutoProfiler
usable for real workflows. For example, we do not calculate updates
when the AutoProfiler tab is closed to avoid unnecessary computation.

The scalability of AutoProfiler can be improved with further engi-
neering. For example, the requests for profiling queries could be exe-
cuted in parallel by augmenting the Jupyter kernel. Furthermore, faster
query execution system like DuckDB [37] can speed up the response
on individual queries over pandas. For particularly large datasets, the
distributions and statistics could be estimated from samples.

5 EVALUATION: USER STUDY

We demonstrate the effectiveness of AutoProfiler in two ways. In this
section, we discuss the results of a user study comparing two levels of
automation support with AutoProfiler and in § 6 we discuss the results
of a longitudinal case study of users with AutoProfiler.

5.1 Participants
To evaluate how AutoProfiler helps data analysts in a sample data
analysis task, we recruited Pandas and Jupyter users for a between-
subjects user study. We recruited 16 participants from social media
and our networks who were experienced data analysts. Our inclusion
criteria required that participants be regular Pandas and Python users.
Our participants had 2 to 12 years of experience doing data science
(mean 4.8 years), and were all regular Python and Pandas users who
frequently used Juptyer. The typical participant reported doing data
analysis weekly and using Pandas daily, with all participants using Pan-
das at least monthly. Our participants worked in a variety of industries
including autonomous vehicles, data journalism, and finance with job
titles including data analyst, data engineer, post-doc, and researcher.

5.2 Research Questions
We had three primary research questions in our user study:
Q1. Live updates: Does a profiler with live updates lead to more

insights found than one with manual updates?
Q2. Starting point for EDA: Does automatically providing visual data

profiles lead users to write less code, and is this information
helpful?

Q3. Linked code and GUI: How does code exporting facilitate handoff
for follow-up analysis?

These research questions correspond to the main features of our tool.
We test how different levels of automation support continuous data

https://github.com/cmudig/AutoProfiler

No. Type Category Origin Description Found Found with tool

1 Missing Error Inherent Small number of missing values in county, beds, title 56% 100%
2 Missing Error Inherent Mostly missing in baths, sqft, description 56% 100%
3 Inconsistent Error Added City has values that are lower and upper case 69% 91%
4 Inconsistent Error Added Negative prices 69% 100%
5 Incorrect Error Inherent Date could be parsed to DateTime format 63% 90%
6 Incorrect Error Added County has default values of "---" 81% 85%
7 Incorrect Error Added Sqft has string values and should be converted to an int 69% 82%
8 Outliers Error Inherent Outliers in sqft 6% 100%
9 Outliers Error Inherent Outliers in price 44% 100%
10 Schema Error Added Duplicate datapoints (duplicate post_ids) 38% 100%
11 Distribution Insight Inherent Room_in_apt is almost all 0 56% 100%
12 Scope Insight Inherent Dataset is only apartments in California 31% 100%
13 Correlation Insight Inherent Inspect correlations between any variable and price 13% 0%

14 Distribution Insight Inherent Data is not evenly distributed across years 38% 100%
15 Inconsistent Error Inherent Year and date column correspond (ensure consistency) 19% 67%
16 Inconsistent Error Inherent The price is not properly extracted from title for some rows 6% 0%

Table 1: Description of each of the errors and insights on our “rubric” of participant performance. We include the percentage of participants that

discovered each error/insight, noting that some discoveries were found far more often than others. As the same information was present in both

AutoProfiler and StaticProfiler, the discovery rate in each condition is largely comparable. The first 13 insights and errors were things we expected

participants to discover ahead of time, and the last 3 were valid extra findings discovered by participants.

profiling for Q1 by comparing the number of insights found through
a profiler with live updates to one that required manual invocation.
With Q2, we explore our design choice of showing a starting point for
data profiling. To answer this question we measure how many insights
participants found through our tools versus their own code and their
qualitative perceptions of each tool version. Finally, to answer Q3
we measured how often exports to code are used during analysis and
participants’ perceptions of this feature.

In order to answer these research questions, we ran a between-
subjects user study with two versions of our tool. We elected for a
between-subjects design since data analysis requires time to do well and
we found during pilots that having participants analyze two separate
datasets was infeasible and the quality of analysis on the second task
was significantly worse. We also noticed a large learning effect in pilot
studies when participants analyzed two datasets back to back.

5.3 StaticProfiler
In our study, one condition used AutoProfiler with live profiles, auto-
matic updates, and code exports. For our other condition, participants
used a static version of the tool which we call StaticProfiler which re-
quires manual invocation. StaticProfiler allows us to test how different
levels of automation support continuous data profiling. The interface
shows the exact same information as AutoProfiler, however, it must
be called manually with plot(df) and does not update automatically
with data updates. The same profiles for each column are presented
in an inline interactive widget with the ability to hand off to code in
the notebook. This sort of manual invocation is similar to other Pan-
das visualization tools in notebooks [1, 25, 30]. A screenshot of the
StaticProfiler tool is included in the appendix.

We compare AutoProfiler with StaticProfiler rather than other open
source tools since StaticProfiler includes largely the same information
as other tools but the UI design is the same as AutoProfiler. Our goal
with this comparison was to isolate the effects that live updates have on
continuous data profiling (Q1) and evaluate Q2 and Q3 through logs
and interviews across both system versions. We compare AutoProfiler
to a non-live updating tool, StaticProfiler, instead of a baseline of no
tool since participants could write any extra code in the study notebook
and did not have to use the tools. This allowed us to evaluate how
different designs impacted tool use and how a tool augmented a typical
programming workflow.

5.4 Procedure and Task
In both conditions, participants were first shown a demo of the tool
version they would be using (AutoProfiler or StaticProfiler). Each
participant then analyzed the same dataset during the task. The dataset

was a sample of a larger dataset of apartment listings from craigslist [32]
with extra “errors” added2 . The task dataset had 1,942 rows and 13
columns. We sampled the dataset to a smaller size so we could be more
confident that our rubric covered the majority of important insights and
errors in the data.

We had 13 pre-known insights/errors that we measured to see how
well participants could explore the data and find these insights as an
inital “rubric” of task performance. Additionally, we included three
extra insights and errors that participants found during their exploration.
A detailed description of each insight/error that we measured is in Ta-
ble 1. The categories of errors in this dataset were inspired by prior
studies that group dataset errors into common types [20]. Our first 10
dataset errors are issues of missing data, inconsistent data, incorrect
data, outliers, and schema violations. Inconsistent data refers to data
with inconsistencies like variations in spelling or units; incorrect data is
parsed as the wrong data type or has default values like dashes or empty
strings. In addition to errors that might jeopardize an analysis if not
discovered, we also measured how well participants discovered several
broader insights in the dataset. Building off past definitions of dataset
insights as unexpected, qualitative findings rooted in the data [28], we
broadly considered insights as findings about the data that did not fit
into one of the aforementioned error buckets and are important to know
before the dataset is used for a downstream task. We initially included
three general insights such as the scope of the dataset, realizing skewed
distributions, and investigating correlations. While these errors/insights
are by no means exhaustive of everything of interest in our dataset, they
provide a common “rubric” that we could evaluate participants against.
We consider this rubric indicative of things that should be found in a
proper EDA of the dataset, regardless of the tool being used. With the
exception of insight 13 about correlations, all of these findings can be
seen in the AutoProfiler or StaticProfiler interfaces.

Participants were asked to explore and clean the data under the
guidance that this dataset was recently acquired by a colleague who
wants to build a predictive model of apartment prices. Participants were
asked to clean and produce a report about the dataset in the notebook
that would be handed off to their colleague. Participants were told there
were at least 10 errors in this dataset that they should try to find and
fix to encourage critical engagement with the data. They were not told
what kind of errors these were or what constituted an error.

Participants were given 30 minutes to explore the data with the tool
and asked to think aloud about what they were investigating. Partic-
ipants were asked to write down any insights and findings in their
notebooks and voice them aloud. During their analysis, they were free

2Task dataset: https://github.com/cmudig/AP-Lab-Study-Public

https://github.com/cmudig/AP-Lab-Study-Public

to look up external documentation and use any other python libraries
they thought might be helpful. Our research team was present if par-
ticipants had questions about the task overall, however, did not answer
questions about the data. We automatically logged interactions with
the tools during the study. Afterward, we conducted semi-structured
interviews with each participant and asked them about how they went
about the task and how the tool supported their analysis. We examined
the findings that participants wrote down in the notebook or voiced
aloud from study recordings to quantify how many of the insights on
our rubric they had found. In Sections § 5.5, § 5.6, and § 5.7 we discuss
findings based on these logs and interview data.

Fig. 5: Usage and task performance metrics of AutoProfiler and Stat-
icProfiler from our user study.

5.5 Live profiles do not lead to more insights but make
verification easier

In both conditions, participants found a similar number of insights: on
average, 6.9 with StaticProfiler and 7.4 with AutoProfiler out of the 16
we measured (P=0.71). Therefore, we did not observe more insights
found with AutoProfiler (Q1). Participants heavily used both versions
of the tool as demonstrated by the similar number of unique dataframes
and columns explored in Figure 5. We suspected the live updates in
AutoProfiler to encourage more tool use which would lead to more
insights found but participants found both versions to be helpful during
their analysis task, reinforcing the value of automatic visualization.
Furthermore, live updates may not have made as much of a difference
in a controlled lab setup versus a less well-defined analysis outside of
the lab setting which we explore in § 6.

Participants used both versions of the tools to verify that their code
had the expected effect on a dataframe. For example, we observed
participants finding an error through the tool, writing code to fix it, and
then checking that their code had the expected effect through the tool.
We particularly noticed this pattern with users of AutoProfiler. For
example, P3 noticed error #3 that the city column contained some cities
that were spelled with different casings (“Oakland” and “oakland”)
with the column detail view. They then fixed this error by making all
the values upper case with their own Pandas code and verified that the
top values were all upper case in AutoProfiler. As P3 described:

“It was nice to see when I do the upper [casing] and I can
just see, oh that worked. When I do the drop duplicates, I
can just look and see like, oh that worked. I like that.”

We observed this (1) find a dataset error, (2) fix, and (3) verify in the
tool loop for many of our participants. Live updates help facilitate this
verification since the updates happen automatically, whereas with the
static version of the tool, users would often verify transformations with
their own code manually. As P7 (StaticProfiler) mentioned: “I only

want [StaticProfiler] when I’m ready for it. Because it does take up
some screen space. Like I don’t want it like suddenly bumping a bunch
of things out of the way.” Since StaticProfiler puts visualizations inline
in the notebook, multiple invocations can lead to cluttered notebooks.

Both AutoProfiler and StaticProfiler also helped participants quickly
discover when they had done a transformation incorrectly. For example,
P5 used AutoProfiler to export the outliers for the beds column to code.
However, when they re-assigned their dataframe variable, they assigned
df to only contain outliers by accident. With AutoProfiler they quickly
noticed that their dataframe now only contained 12 data points with
extreme distributions and were able to fix their error. We observed this
pattern of the tool helping find user errors during four different studies,
three of which were using AutoProfiler.

Using static, inline data profiles is not without its advantages. For
one, several users liked the ability to keep a history of past dataframes
in their notebook when they called plot() with StaticProfiler. Although
some participants felt this led to potentially cluttered notebooks, it
can be useful to scroll back to an earlier version of the data. This is
not possible in AutoProfiler since the visualizations always show the
current dataframe in memory.

5.6 Automatic visualizations speed up insight discovery
Participants found the tools to be useful both as a first step in analysis,
but also to help them understand their data after updates and transforms.
We logged interactions during the study and present metrics of interest
in Figure 5. We measured the unique dataframes explored as the num-
ber of unique dataframes toggled open (AutoProfiler) or called with
plot (StaticProfiler). This metric captures how often a user returns to a
dataframe after it updates or explores a new dataframe. For example, if
a user explores df, updates it, then explores df again we would count this
as two unique interactions. We observed that participants with AutoPro-
filer interacted with slightly more dataframes (9.9 vs 5.5), however, this
difference was not statistically significant (P=0.21). Over the course
of their analysis, participants were on average inspecting data profiles
in AutoProfiler for almost 10 different slices or updates to dataframes.
One of our participants with AutoProfiler actually interacted with 30
unique dataframes during their analysis.

We also measured the number of unique columns (including updates)
that participants interacted with and find that they explore largely the
same number of columns in each condition, investigating 25.5 unique
columns on average with AutoProfiler and 24.1 with StaticProfiler.
Since the original dataset had 13 columns, this indicates that partici-
pants were not only interacting with the original data but were returning
to the profiles as they updated or filtered their data. This continuous
interaction is the main goal of continuous data profiling.

Overwhelmingly, participants found their insights with the assis-
tance of either tool rather than by manually writing code to get the
same information. This means that when a participant said the insight
aloud or wrote it down in their notebook, this information was discov-
ered through the tool. Across both conditions, an average of 91% of
insights found came from the tool, with a non-significant difference in
rates between the two conditions (P=1.0). This means that on average
only 9% of insights were found by users writing manual pandas code
during the study. This supports that the information contained in the
profiles is useful and replicates what participants would have wanted to
see anyway without requiring extra code to be written (Q2). As P14
(StaticProfiler) said “it does a lot of the things that I already do, but
just in one succinct and easy-to-understand way”. By presenting this
information automatically, the tools saved participants time and pre-
vented them from having to exit their analysis flow to look up external
documentation. As P10 (AutoProfiler) described:

“I might have known to look for it, but it would have taken
me a lot longer to remember how to do it in Pandas.”

When data profiling information is more easily accessible it speeds
up the entire analysis loop, making it easier to discover more insights
in a shorter amount of time while still being thorough. As P9 (AutoPro-
filer) described:

“I would probably try to do similar things that AutoProfiler

suggests [on my own], but it would take a much longer time.
Like the amount I did in 30 minutes, if I had to do it without
AutoProfiler, would have taken hours. And then since it
takes longer, my motivation would go down and my focus
would go down. So I feel like I would have found far fewer
errors than I could with AutoProfiler.”

We found that not all insights were discovered with the same fre-
quency, with discovery rates between 6% and 81%. In Table 1 we see
that some errors like #6 were found by 81% of participants; others
like #8 or #10 were found by 6% and 38%, respectively. Error #8 was
particularly difficult since the sqft column had to be parsed from a
string to an integer (error #7) to get information about the outliers in
the profiles. Many participants did not successfully fix this issue during
the study time, explaining the low discovery rate. However, duplicate
primary keys (error #10) was readily discoverable in the interface by
looking at the number of unique values in the post_id column yet few
participants found it. We discuss this usage trend in more depth in § 7
about how tools can facilitate users finding information they would
have already wanted to investigate, however if they do not know to
check for an issue then this information is easily skipped over.

5.7 Exports facilitate follow-up analysis and learning
We also measured the number of times that participants exported to
code during their analysis. Every participant used code exports at least
once, with the total number of exports ranging from 1 to 16, with a mean
of 7.1 exports. In Figure 5, we detail the average number of exports
between the two tools. We see similar trends across both conditions,
where participants export more selection exports than template exports.
Selection exports refer to exporting a filter from a chart or summary
statistic like exporting the selection for df[df.city == "San Jose"]. Al-
though these exports are small, they can help make follow-up analysis
easier if a user wants to filter since “that’s probably the most annoying
lines to constantly type is [to] just filter” (P5, using AutoProfiler).

Template exports refer to code for authoring a chart or getting out-
liers. Participants also found this helpful because it helped facilitate
tweaking code for follow-up analysis. When describing their reason for
using chart exports, P14 (StaticProfiler) mentioned “It’s really nice to
just quickly be able to like to copy that and use it, and then I could just
make some edits to it.” This answers Q3 that exports facilitate faster
feedback loops.

Another unexpected benefit of code exports is the ability to actually
learn Pandas better and understand what is going on under the hood
of the system when it reports a statistic. As P12 (AutoProfiler) said
succinctly: “I’m learning as I’m exploring and it’s saving me time.”
Expanding more, P2 (StaticProfiler) mentioned:

“For the educational perspective, that’s something I didn’t
expect...specifically, I [exported] the standard deviation and
I could see points inside or outside of 3 [std]. When I saw
that code I learned that’s the way to do that.”

The ability to teach users how to do common analysis steps is an
exciting aspect of systems that support easily linking code and direct
manipulation interactions.

5.8 Limitations
Our user study is subject to several limitations. First, subjects were
explicitly told to explore and clean their dataset and were given 30
minutes to engage with a brand-new dataset. This is a relatively short
time span to learn and use a new tool on new data. We also suspect
that the explicit instructions to find errors and write down findings in a
report might have encouraged better continuous data profiling practices
than what actually happens in real-world settings. However, these
explicit instructions helped us determine which features specifically aid
in continuous data profiling and what kind of errors users commonly
find or miss. Another limitation is that participants analyzed a relatively
small dataset. The errors and insights in our dataset were representatives
of those found in larger datasets and we believe our findings translate
well to other tabular dataset tasks. Finally, we compared two versions
of our tool with different levels of automation to understand how they

supported continuous data profiling rather than comparing to a baseline
with no tool and view this as an area for future work.

Fig. 6: AutoProfiler integrated into a domain scientist’s analysis workflow

during our case study. AutoProfiler is shown on the bottom screen in the

Jupyter notebook.

6 EVALUATION: LONGITUDINAL CASE STUDY

To address some of the limitations of our user study, we also evaluated
how AutoProfiler helps data scientists in a real world environment
by working with domain scientists at a US National Lab to integrate
AutoProfiler into their workflows. These scientists work with large-
scale image data collected from beamline X-ray scattering experiments
to understand the properties of physical materials [23]. Two different
scientists installed AutoProfiler into their Jupyter Lab environments
and used it over a three month period during their analyses as much as
they liked. We were unable to collect log data during this deployment
for privacy reasons. We periodically spoke with the scientists during
the deployment to make sure the tool was working. At the end of the
3-month period, we conducted in-person observations and interviews
with the participants where they showed us the notebooks and datasets
where they were using AutoProfiler and we asked about how they used
the system, and which features they felt supported their workflows.

As a Jupyter Lab extension, AutoProfiler fits into the existing work-
flows of these scientists since they typically did data analysis with
Python and had existing libraries for visualizing and manipulating their
data. AutoProfiler helped improve two different workflows they have
for data analysis. The first is for monitoring data outputs and quality
while an experiment is running. Their experiments last for multiple
hours or even days while they collect image readings from a sensor and
then process these images into tabular datasets with Python image pro-
cessing pipelines. As the scientists describe, during these experiments
“real-time feedback is important as it shows us whether the experiment
is working”. The participants mentioned how AutoProfiler improved
this type of monitoring since it works with any Python-based analysis
and “allows [them] to easily notice any anomaly and observe a trend or
correlation during experiments.”

The second way the participants used AutoProfiler was to analyze
their results after an experiment completed. In this scenario, the scien-
tists “iteratively sub-selected a relevant set of data, using AutoProfiler
as a guide, and then analyzed this subset of data using existing analy-
sis/plotting tools. Thus, AutoProfiler has shown its value in improving

data triage, data organization, and serendipitous discovery of trends in
datasets”. In the remainder of this section, we discuss two high-level
patterns of use that emerged from interviews with the participants in
our long-term deployment.

6.1 Finding and following up on trends
When using AutoProfiler to analyze their experimental results, our par-
ticipants expressed how the tool facilitated finding interesting aspects
in their data and then diving deeper into those subsets. In this way,
AutoProfiler facilitated a faster find-and-verify loop during analysis.
The automatic plotting in AutoProfiler presented interesting plots in
their dataset that helped them find subsets to export and explore further
such as by running other analysis code to plot the images corresponding
to each data point. They were especially excited about the possibility
of incorporating bivariate charts into AutoProfiler so they would have
to use even less of their own analysis code.

6.2 AutoProfiler facilitates serendipitous discovery
The scientists used the live version of AutoProfiler that updates when-
ever their data changes. They mentioned that the combination of all
three features (automatic visualization, live updates, and code author-
ing) supported one another to lower the friction of their data analysis
and were not enthusiastic about using versions of the tool without all of
these features (such as in StaticProfiler). Furthermore, the participants
mentioned that using AutoProfiler helped them discover trends or errors
they might not have noticed otherwise:

“One of the things that I very often notice is if the histogram
is completely flat. That means that either all the numbers
are exactly the same, or that it’s some sort of sequential
number. Sometimes that’s what I’m expecting, so great.
But sometimes, if it’s not what I’m expecting, then that
immediately stands out as being weird and it draws my
attention to it. I would never have noticed if it were not
plotted; I would never have thought to plot it.”

Our participants described how these unexpected, serendipitous, dis-
coveries were primarily facilitated by the auto-updating and automatic
visualizations of AutoProfiler and made the system a valuable part of
their workflow.

7 DISCUSSION AND FUTURE WORK

Data science is messy. There are a combinatorially large number of
ways to slice a dataset, trying to find meaningful insights. The goal
of continuous data profiling is to augment a human’s sense-making
ability by automating the analysis feedback loop to be as fast as possible.
Previous work has established that automated systems can best facilitate
data understanding by automating the need for manual specification
[15]. We found that two different versions of automatic profiling help
speed up this feedback loop in our user study. Furthermore, we found
evidence that the combination of automatic visualization, live updates,
and code handoff leads to a smoother, more thorough analysis loop in
our long-term deployment where our participants credited AutoProfiler
with helping them find “serendipitous discoveries” in their dataset.

In real-world tasks, encouraging critical engagement is challenging
because analysts must trade off finding insights and errors quickly with
a thorough and exhaustive analysis of their data. AutoProfiler’s design
removes friction by saving time and clicks to better facilitate continuous
data profiling. Since AutoProfiler works with any pandas dataframe,
users do not have to write or copy and paste profiling code that might
be tightly coupled to a specific dataset. This makes notebooks cleaner
and easier to maintain.

Future tools can leverage the benefits of both code and automated
visualization for data analysis through linked and deeply integrated
data profiles. Automatically presenting a starting set of profiling in-
formation and supporting follow-up analysis by enabling code exports
helps reduce the feedback time during analysis. This approach differs
from other profiling systems that aim to include as much information
as possible in the interface without handing off to code [25, 30].

7.1 Guiding users towards unknown insights
Beyond making data analysis faster, automated systems like AutoPro-
filer can help users discover insights they might have otherwise missed.
These serendipitous discoveries present an interesting opportunity for
tools to help users look at their data in new ways. However, this process
cannot be fully automated. Automatically presenting data profiles to
users gives them the opportunity to find insights. Users must still take
the time to look at and interpret if an insight or error is noteworthy.
Automated systems can augment human expertise, but do not replace
it. For example, in our user study, many participants missed important
data quality issues like duplicate values, even though this information
was readily available in either tool if one knew to check. The most
common types of unexpected errors discovered through AutoProfiler
were strange distributions such as a totally flat distribution or weird
frequent values. The distribution information is very visually prominent
in AutoProfiler, perhaps making it easier to discover in the interface.

Automated assistance in notebooks opens up the design space for
further improvements toward guided analysis. One exciting area for
future work is the potential to integrate alerts into automatic data pro-
files to draw user attention to important errors. For example, an alert
could be displayed if a column has a number of null values or outliers
greater than some threshold. Alerts must be customizable and designed
to minimize alert fatigue, or else a user may totally ignore them [43].
With existing inline, manual profilers [30] these alerts would be re-
computed and displayed every time a user updates and re-profiles their
data, quickly causing alert fatigue. Tools like AutoProfiler present an
opportunity for persistent alerts between profiles that can better support
continuous data science.

7.2 Authoring more analysis code for users
Our export to code feature was very popular among participants, with
many requests for even more ways to export to code. Part of the benefit
of AutoProfiler’s approach to exports is they are predictable: the system
exports the same template code every time, with the dataframe and
column names filled in. This is in contrast to generative approaches
to code authoring such as Github Copilot [13] where a model might
produce different code for the same task depending on the prompt.
Users must then take time to understand this new code each time it is
exported. The downside to template approaches like ours is that it is
less flexible for arbitrary analysis.

In our user study, we frequently observed participants needing to
look up the documentation for how to write a certain command with the
Pandas library, even if they were experienced users. As tools continue
to evolve to automatically write analysis code through text prompting,
we think this will make data iteration even faster. The linked, interactive
outputs from systems like AutoProfiler becomes even more valuable to
help users understand their data as the time it takes to write analysis
code decreases, perhaps especially when users are not manually writing
all of that code and need to understand its effect on their data.

8 CONCLUSION

In conclusion, we present AutoProfiler, a Jupyter notebook assistant
that uses automatic, live, and linked data profiles to support continuous
data profiling during data analysis. In a controlled user study, we find
users leverage two versions of our tool, dead or alive, to find the vast
majority of insights during a data cleaning task. Furthermore, we find
that AutoProfiler easily fits into data scientists’ real-world workflows
and helps them discover unexpected insights in their data during a
longitudinal case study. We discuss how tools like AutoProfiler open
up the design space for automated assistants to support continuous data
profiling during analysis.

ACKNOWLEDGMENTS

We would like to thank Venkat Sivaraman, Katelyn Morrison, Alex
Cabrera and the members of the Data Interaction Group at CMU
for their feedback on this work; Hamilton Ulmer and the Rill Data
team for the initial implementation of our data profiling charts; Wei
Xu, Kevin Yager, and Esther Tsai at Brookhaven National Labora-
tory for their feedback and use of AutoProfiler. This research was

supported by Brookhaven National Laboratory through New York
State funding and the Human-AI-Facility Integration (HAI-FI) ini-
tiative.

REFERENCES

[1] 8080 Labs. bamboolib. https://bamboolib.8080labs.com/, 2020.
Accessed 06-2023. 2, 6

[2] S. Alspaugh, N. Zokaei, A. Liu, C. Jin, and M. A. Hearst. Futzing
and moseying: Interviews with professional data analysts on exploration
practices. IEEE Transactions on Visualization and Computer Graphics,
25:22–31, 2019. doi: 10.1109/TVCG.2018.2865040 1, 2, 3

[3] Anaconda Foundation. The state of data science 2020: Mov-
ing from hype toward maturity. https://www.anaconda.com/
state-of-data-science-2020, 2020. Accessed 06-2023. 2

[4] Apache Arrow. Pyarrow - apache arrow python bindings. https://
arrow.apache.org/docs/python/index.html, 2023. Accessed 06-
2023. 3

[5] P. D. Bailis, E. Gan, K. Rong, S. Suri, and S. InfoLab. Prioritizing
attention in fast data: Principles and promise. In 8th Biennial Conference
on Innovative Data Systems Research (CIDR 17), 2017. 1

[6] F. Bertrand. sweetviz. https://github.com/fbdesignpro/
sweetviz. Accessed 06-2023. 2

[7] R. DeLine and D. Fisher. Supporting exploratory data analysis with live
programming. In 2015 IEEE Symposium on Visual Languages and Human-
Centric Computing (VL/HCC), pp. 111–119, 2015. doi: 10.1109/VLHCC.
2015.7357205 2

[8] c. Demiralp, P. J. Haas, S. Parthasarathy, and T. Pedapati. Foresight:
Recommending visual insights. Proc. VLDB Endow., 10(12), aug 2017.
doi: 10.14778/3137765.3137813 2

[9] W. Epperson, D. Jung-Lin Lee, L. Wang, K. Agarwal, A. G. Parameswaran,
D. Moritz, and A. Perer. Leveraging analysis history for improved in situ
visualization recommendation. Computer Graphics Forum, 41(3):145–
155, 2022. doi: 10.1111/cgf.14529 3

[10] W. Epperson, A. Y. Wang, R. DeLine, and S. M. Drucker. Strategies for
reuse and sharing among data scientists in software teams. In Proceedings
of the 44th International Conference on Software Engineering: Software
Engineering in Practice, ICSE-SEIP ’22, p. 243–252. Association for
Computing Machinery, New York, NY, USA, 2022. doi: 10.1145/3510457
.3513042 2, 3, 4

[11] D. Fisher, R. DeLine, M. Czerwinski, and S. Drucker. Interactions with
big data analytics. Interactions, 19(3):50–59, may 2012. doi: 10.1145/
2168931.2168943 2

[12] N. Forsgren, M.-A. Storey, C. Maddila, T. Zimmermann, B. Houck, and
J. Butler. The space of developer productivity: There’s more to it than you
think. Queue, 19(1):20–48, mar 2021. doi: 10.1145/3454122.3454124 3

[13] Github. Github copilot - your ai pair programmer. https://github.
com/features/copilot. Accessed 06-2023. 9

[14] A. Head, F. Hohman, T. Barik, S. M. Drucker, and R. DeLine. Managing
messes in computational notebooks. In Proceedings of the 2019 CHI
Conference on Human Factors in Computing Systems, CHI ’19, p. 1–12.
Association for Computing Machinery, New York, NY, USA, 2019. doi:
10.1145/3290605.3300500 2

[15] J. Heer. Agency plus automation: Designing artificial intelligence into
interactive systems. Proceedings of the National Academy of Sciences,
116:1844 – 1850, 2019. doi: 10.1073/pnas.1807184115 2, 3, 9

[16] J. M. Hellerstein. Quantitative data cleaning for large databases. United
Nations Economic Commission for Europe (UNECE), 2008. 2

[17] F. Hermans, B. Jansen, S. Roy, E. Aivaloglou, A. Swidan, and D. Hoe-
pelman. Spreadsheets are code: An overview of software engineering
approaches applied to spreadsheets. In 2016 IEEE 23rd International
Conference on Software Analysis, Evolution, and Reengineering (SANER),
vol. 5, pp. 56–65, 2016. doi: 10.1109/SANER.2016.86 2

[18] F. Hohman, K. Wongsuphasawat, M. B. Kery, and K. Patel. Understanding
and visualizing data iteration in machine learning. In Proceedings of the
2020 CHI Conference on Human Factors in Computing Systems, CHI ’20,
p. 1–13. Association for Computing Machinery, New York, NY, USA,
2020. doi: 10.1145/3313831.3376177 2

[19] S. Kandel, A. Paepcke, J. M. Hellerstein, and J. Heer. Enterprise data
analysis and visualization: An interview study. IEEE Transactions on
Visualization and Computer Graphics, 18(12):2917–2926, 2012. doi: 10.
1109/TVCG.2012.219 2

[20] S. Kandel, R. Parikh, A. Paepcke, J. M. Hellerstein, and J. Heer. Profiler:
Integrated statistical analysis and visualization for data quality assessment.
In Proceedings of the International Working Conference on Advanced
Visual Interfaces, AVI ’12, p. 547–554. Association for Computing Ma-
chinery, New York, NY, USA, 2012. doi: 10.1145/2254556.2254659 2,
6

[21] M. B. Kery, A. Horvath, and B. Myers. Variolite: Supporting exploratory
programming by data scientists. In Proceedings of the 2017 CHI Confer-
ence on Human Factors in Computing Systems, CHI ’17, p. 1265–1276.
Association for Computing Machinery, New York, NY, USA, 2017. doi:
10.1145/3025453.3025626 3, 4

[22] M. B. Kery, D. Ren, F. Hohman, D. Moritz, K. Wongsuphasawat, and
K. Patel. Mage: Fluid moves between code and graphical work in compu-
tational notebooks. In Proceedings of the 33rd Annual ACM Symposium
on User Interface Software and Technology, UIST ’20, p. 140–151. As-
sociation for Computing Machinery, New York, NY, USA, 2020. doi: 10.
1145/3379337.3415842 3, 4

[23] M. H. Kiapour, K. G. Yager, A. C. Berg, and T. L. Berg. Materials
discovery: Fine-grained classification of x-ray scattering images. IEEE
Winter Conference on Applications of Computer Vision, pp. 933–940, 2014.
8

[24] M. Kim, T. Zimmermann, R. DeLine, and A. Begel. Data scientists in
software teams: State of the art and challenges. IEEE Transactions on
Software Engineering, 44(11):1024–1038, 2018. doi: 10.1109/TSE.2017.
2754374 2

[25] D. J. L. Lee, D. Tang, K. Agarwal, T. Boonmark, C. Chen, J. T. J.
Kang, U. Mukhopadhyay, J. Song, M. Yong, M. A. Hearst, and A. G.
Parameswaran. Lux: Always-on visualization recommendations for ex-
ploratory dataframe workflows. Proc. VLDB Endow., 15:727–738, 2021.
2, 3, 6, 9

[26] X. Li, Y. Zhang, J. Leung, C. Sun, and J. Zhao. Edassistant: Supporting
exploratory data analysis in computational notebooks with in situ code
search and recommendation. ACM Trans. Interact. Intell. Syst., 13(1), mar
2023. doi: 10.1145/3545995 2

[27] J. H. Maloney and R. B. Smith. Directness and liveness in the morphic
user interface construction environment. In ACM Symposium on User
Interface Software and Technology, 1995. 2, 3

[28] C. North. Toward measuring visualization insight. IEEE Computer Graph-
ics and Applications, 26(3):6–9, may 2006. doi: 10.1109/mcg.2006.70
6

[29] Pandas. Pandas: Python data analysis library. https://pandas.pydata.
org. Accessed 06-2023. 3

[30] Pandas-Profiling. pandas-profiling. https://github.com/
pandas-profiling/pandas-profiling. Accessed 06-2023. 2,
3, 6, 9

[31] J. Peng, W. Wu, B. Lockhart, S. Bian, J. N. Yan, L. Xu, Z. Chi, J. M. Rzes-
zotarski, and J. Wang. Dataprep.eda: Task-centric exploratory data analy-
sis for statistical modeling in python. In Proceedings of the 2021 Interna-
tional Conference on Management of Data, SIGMOD ’21, p. 2271–2280.
Association for Computing Machinery, New York, NY, USA, 2021. doi:
10.1145/3448016.3457330 2

[32] K. Pennington. Bay area craigslist posts, 2000 - 2018. https://www.
katepennington.org/data. Accessed 06-2023. 6

[33] J. M. Perkel. Why jupyter is data scientists’ computational notebook of
choice. Nature News, Oct 2018. doi: 10.1038/d41586-018-07196-1 1, 2, 3

[34] J. Piazentin Ono, J. Freire, and C. T. Silva. Interactive data visualization in
jupyter notebooks. Computing in Science & Engineering, 23(2):99–106,
2021. doi: 10.1109/MCSE.2021.3052619 2

[35] J. F. Pimentel, L. Murta, V. Braganholo, and J. Freire. A large-scale study
about quality and reproducibility of jupyter notebooks. In 2019 IEEE/ACM
16th International Conference on Mining Software Repositories (MSR),
pp. 507–517, 2019. doi: 10.1109/MSR.2019.00077 4

[36] Polars. Polars, lightning-fast dataframe library. https://www.pola.rs/.
Accessed 06-2023. 3

[37] M. Raasveldt and H. Mühleisen. Efficient SQL on Pandas with DuckDB
— duckdb.org. https://duckdb.org/2021/05/14/sql-on-pandas.
html, may 2021. Accessed 06-2023. 5

[38] Rill Data. Rill developer. https://github.com/rilldata/
rill-developer. Accessed 06-2023. 3

[39] A. Rose. PandasGUI. https://github.com/adamerose/pandasgui.
Accessed 06-2023. 2

[40] A. Rule, A. Tabard, and J. D. Hollan. Exploration and explanation in
computational notebooks. In Proceedings of the 2018 CHI Conference on

https://bamboolib.8080labs.com/
https://doi.org/10.1109/TVCG.2018.2865040
https://www.anaconda.com/state-of-data-science-2020
https://www.anaconda.com/state-of-data-science-2020
https://arrow.apache.org/docs/python/index.html
https://arrow.apache.org/docs/python/index.html
https://github.com/fbdesignpro/sweetviz
https://github.com/fbdesignpro/sweetviz
https://doi.org/10.1109/VLHCC.2015.7357205
https://doi.org/10.1109/VLHCC.2015.7357205
https://doi.org/10.14778/3137765.3137813
https://doi.org/10.1111/cgf.14529
https://doi.org/10.1145/3510457.3513042
https://doi.org/10.1145/3510457.3513042
https://doi.org/10.1145/2168931.2168943
https://doi.org/10.1145/2168931.2168943
https://doi.org/10.1145/3454122.3454124
https://github.com/features/copilot
https://github.com/features/copilot
https://doi.org/10.1145/3290605.3300500
https://doi.org/10.1145/3290605.3300500
https://doi.org/10.1073/pnas.1807184115
https://doi.org/10.1109/SANER.2016.86
https://doi.org/10.1145/3313831.3376177
https://doi.org/10.1109/TVCG.2012.219
https://doi.org/10.1109/TVCG.2012.219
https://doi.org/10.1145/2254556.2254659
https://doi.org/10.1145/3025453.3025626
https://doi.org/10.1145/3025453.3025626
https://doi.org/10.1145/3379337.3415842
https://doi.org/10.1145/3379337.3415842
https://doi.org/10.1109/TSE.2017.2754374
https://doi.org/10.1109/TSE.2017.2754374
https://doi.org/10.1145/3545995
https://doi.org/10.1109/mcg.2006.70
https://pandas.pydata.org
https://pandas.pydata.org
https://github.com/pandas-profiling/pandas-profiling
https://github.com/pandas-profiling/pandas-profiling
https://doi.org/10.1145/3448016.3457330
https://doi.org/10.1145/3448016.3457330
https://www.katepennington.org/data
https://www.katepennington.org/data
https://doi.org/10.1038/d41586-018-07196-1
https://doi.org/10.1109/MCSE.2021.3052619
https://doi.org/10.1109/MSR.2019.00077
https://www.pola.rs/
https://duckdb.org/2021/05/14/sql-on-pandas.html
https://duckdb.org/2021/05/14/sql-on-pandas.html
https://github.com/rilldata/rill-developer
https://github.com/rilldata/rill-developer
https://github.com/adamerose/pandasgui
https://duckdb.org

Human Factors in Computing Systems, CHI ’18, p. 1–12. Association for
Computing Machinery, New York, NY, USA, 2018. doi: 10.1145/3173574
.3173606 2, 3

[41] N. Sambasivan, S. Kapania, H. Highfill, D. Akrong, P. Paritosh, and L. M.
Aroyo. “everyone wants to do the model work, not the data work”: Data
cascades in high-stakes ai. In Proceedings of the 2021 CHI Conference
on Human Factors in Computing Systems, CHI ’21. Association for Com-
puting Machinery, New York, NY, USA, 2021. doi: 10.1145/3411764.
3445518 2

[42] H. Seltman. Experimental design and analysis. Carnegie Mellon Univer-
sity, Jul 2018. 2

[43] S. Shankar, R. Garcia, J. M. Hellerstein, and A. G. Parameswaran. Opera-
tionalizing machine learning: An interview study. ArXiv, abs/2209.09125,
2022. 2, 9

[44] B. Shneiderman. The eyes have it: a task by data type taxonomy for
information visualizations. In Proceedings 1996 IEEE Symposium on
Visual Languages, pp. 336–343, 1996. doi: 10.1109/VL.1996.545307 3

[45] T. Siddiqui, A. Kim, J. Lee, K. Karahalios, and A. Parameswaran. Ef-
fortless data exploration with zenvisage: An expressive and interactive
visual analytics system. Proc. VLDB Endow., 10(4), nov 2016. doi: 10.
14778/3025111.3025126 2

[46] Sveltejs. Svelte: cybernetically enhanced web apps. https://svelte.
dev/, 2016. Accessed 06-2023. 5

[47] J. W. Tukey. We need both exploratory and confirmatory. The American
Statistician, 34:23–25, 1980. doi: 10.2307/2682991 1, 2

[48] A. Y. Wang, W. Epperson, R. A. DeLine, and S. M. Drucker. Diff in
the loop: Supporting data comparison in exploratory data analysis. In
Proceedings of the 2022 CHI Conference on Human Factors in Computing
Systems, CHI ’22. Association for Computing Machinery, New York, NY,
USA, 2022. doi: 10.1145/3491102.3502123 2

[49] K. Wongsuphasawat, Y. Liu, and J. Heer. Goals, process, and challenges
of exploratory data analysis: An interview study. ArXiv, abs/1911.00568,
2019. 1

[50] K. Wongsuphasawat, D. Moritz, A. Anand, J. Mackinlay, B. Howe, and
J. Heer. Voyager: Exploratory analysis via faceted browsing of visual-
ization recommendations. IEEE Trans. Visualization & Comp. Graphics
(Proc. InfoVis), 2016. doi: 10.1109/TVCG.2015.2467191 2

[51] Y. Wu, J. M. Hellerstein, and A. Satyanarayan. B2: Bridging Code and
Interactive Visualization in Computational Notebooks. In ACM User
Interface Software & Technology (UIST), 2020. doi: 10.1145/3379337.
3415851 3, 4

https://doi.org/10.1145/3173574.3173606
https://doi.org/10.1145/3173574.3173606
https://doi.org/10.1145/3411764.3445518
https://doi.org/10.1145/3411764.3445518
https://doi.org/10.1109/VL.1996.545307
https://doi.org/10.14778/3025111.3025126
https://doi.org/10.14778/3025111.3025126
https://svelte.dev/
https://svelte.dev/
https://doi.org/10.2307/2682991
https://doi.org/10.1145/3491102.3502123
https://doi.org/10.1109/TVCG.2015.2467191
https://doi.org/10.1145/3379337.3415851
https://doi.org/10.1145/3379337.3415851

	Introduction
	Related Work
	Data understanding is critical yet cumbersome
	Prior assisted and integrated EDA tools
	Liveness in user interfaces
	Linking code and GUI interactions

	Design Goals
	Continuous Data Profiling with AutoProfiler
	AutoProfiler shows EDA automatically
	Live Data Profiles
	Exports to code
	Implementation and Architecture

	Evaluation: User Study
	Participants
	Research Questions
	StaticProfiler
	Procedure and Task
	Live profiles do not lead to more insights but make verification easier
	Automatic visualizations speed up insight discovery
	Exports facilitate follow-up analysis and learning
	Limitations

	Evaluation: Longitudinal Case Study
	Finding and following up on trends
	AutoProfiler facilitates serendipitous discovery

	Discussion and Future Work
	Guiding users towards unknown insights
	Authoring more analysis code for users

	Conclusion

