
Data Navigator: An Accessibility-Centered Data Navigation Toolkit

Frank Elavsky , Lucas Nadolskis, Dominik Moritz

Fig. 1: Data Navigator provides data visualization libraries and toolkits with accessible data navigation structures, robust input handling,
and flexible semantic rendering capabilities.

Abstract—Making data visualizations accessible for people with disabilities remains a significant challenge in current practitioner efforts.
Existing visualizations often lack an underlying navigable structure, fail to engage necessary input modalities, and rely heavily on
visual-only rendering practices. These limitations exclude people with disabilities, especially users of assistive technologies. To address
these challenges, we present Data Navigator: a system built on a dynamic graph structure, enabling developers to construct navigable
lists, trees, graphs, and flows as well as spatial, diagrammatic, and geographic relations. Data Navigator supports a wide range of input
modalities: screen reader, keyboard, speech, gesture detection, and even fabricated assistive devices. We present 3 case examples
with Data Navigator, demonstrating we can provide accessible navigation structures on top of raster images, integrate with existing
toolkits at scale, and rapidly develop novel prototypes. Data Navigator is a step towards making accessible data visualizations easier to
design and implement.

Index Terms—accessibility, visualization, tools, technical materials, platforms, data interaction

1 INTRODUCTION

While there is a growing interest in making data visualizations more
accessible for people with disabilities, current toolkit and practitioner
efforts have not risen to the challenge at scale. Major data visualization
tools and ecosystems predominantly produce inaccessible artifacts for
many users with disabilities. We believe this is largely a gap caused by
a lack of underlying structure in most visualizations, failure to engage
the input modalities used by people with disabilities, and over-reliance
on visual-only rendering practices.

Users who are blind or low vision commonly use screen readers and
users with motor and dexterity disabilities often do not use "pointer"
(precise mouse and touch) based input technology when interacting
with digital interfaces. Many users with motor and dexterity disabilities
use discrete navigation controls, either sequentially using keyboard-like

• All authors are with Carnegie Mellon University.
• Frank Elavsky: fje@cmu.edu.
• Lucas Nadolskis: nadolskis@cmu.edu.
• Dominik Moritz: domoritz@cmu.edu.

Manuscript received xx xxx. 201x; accepted xx xxx. 201x. Date of Publication
xx xxx. 201x; date of current version xx xxx. 201x. For information on
obtaining reprints of this article, please send e-mail to: reprints@ieee.org.
Digital Object Identifier: xx.xxxx/TVCG.201x.xxxxxxx

input, or directly using voice or text commands.
Most interactive visualizations simply focus on pointer-based input:

they can be clicked or tapped, hovered, and selected in order to per-
form analytical tasks. This excludes non-pointer input technologies.
These devices require consideration for the navigation structure and
underlying semantics of a visual interface.

However, building navigable spatial and relational interfaces is a
difficult task with current resources.

Raster images, arguably the most common format for creating and
disseminating data visualizations, currently cannot be made into navi-
gable structures. These are only described using alt text, which limits
their usefulness to screen reader users.

Unfortunately, more accessible rendering formats like SVG with
ARIA (accessible rich internet applications) properties are more re-
source intensive than raster approaches, like WebGL-powered HTML
canvas or pre-rendered PNG files. SVG puts a burden on low-bandwidth
users and a ceiling on how many data points can be rendered in memory.

In addition, ARIA itself has 2 major limitations. First, when added
to interface elements, ARIA only provides screen reader access, which
means that developers must build a solution from scratch for other navi-
gation input modalities. Second, ARIA’s linear navigation structure can
be time-consuming for screen reader users if a visualization has many
elements. This may impede how essential insights and relationships

https://orcid.org/0000-0002-6849-5893
https://orcid.org/0000-0002-3110-1053
mailto:reprints@ieee.org
mailto:domoritz@cmu.edu
mailto:nadolskis@cmu.edu
mailto:fje@cmu.edu

are understood [14, 19, 32, 37, 38, 47].
Some emerging approaches have sought to address this serial limita-

tion of data navigation and provide richer experiences for screen reader
users [14, 37, 38, 47]. However, these approaches rely on a tree-based
navigation structure which is often not an appropriate choice for visual-
izations of relational, spatial, diagrammatic, or geographic data. Many
visualization structures are currently unaddressed.

Zong et al. stress that in order to realize richer, more accessible data
visualizations, the responsibility must be shared by “toolkit makers,” the
practitioners who design, build, and maintain visualization authoring
technologies [47]. Our contribution is towards that aim, to make more
accessible data experiences easier to design and implement within
existing visualization work.

We present Data Navigator. Data Navigator is a toolkit built on
a graph data structure, within which a broad array of common data
structures can be expressed (including list, tree, graph, relational, spa-
tial, diagrammatic, and geographic structures). Data Navigator also
exposes an interface that supports interactions via screen reader, key-
board, gesture-based touch, motion gesture, voice, as well as fabricated
and DIY input modalities. Data Navigator provides expressive structure
and semantic rendering capabilities as well as the ability for developers
to use their own, preferred method of rendering.

Data Navigator builds upon human-studies motivated work on ac-
cessible navigation [38, 47] towards a more generalizable resource for
visualization practitioners. We contribute a high-level system design
for our node-edge graph-based solution as well as an implementation
of this system on the web, using JavaScript, HTML, and CSS. Through
our case examples we also demonstrate that our generalized approach
is suitable for replication of existing best practices from other systems,
integration into existing visualization toolkit ecosystems, and devel-
opment of novel prototypes for accessible navigation. We illustrate
how Data Navigator’s use of generic edges, dynamic navigation rules,
and loose coupling between navigation and visual encodings provides
practitioners robust, expressive, control over their system designs.

2 RELATED WORK

Our contribution is an attempt to bridge the gap between research
and practice more effectively across broad ecosystems in order to
enable deeper and more expressive accessible data navigation interfaces.
Below we outline the prior research and standards that inform our
project, a breakdown of existing visualization toolkit approaches to
data navigation, and then accessible input device considerations.

2.1 Accessibility research and standards in visualization

Research and standards are both somewhat limited by a strong bias
towards visual disabilities. In Chartability, 36 of the 50 criteria related
to accessible visualization considerations involve visual disabilities [10,
11]. Marriott et al. also found that visual disability considerations
are the primary focus of data visualization literature [27], leaving the
barriers that many other demographics face unstudied.

However, despite the heavy focus on visual disabilities, the work
that does exist in the visualization community is deeply valuable and
serves as an important starting point for our technical contribution.

2.1.1 Accessible navigation design considerations

Zong et al.’s research, which was conducted as in-depth co-design
work and validated in usability studies involving blind participants,
presented a design space for accessible, rich screen reader navigation
of data visualizations. They organized their design space into structure,
navigation, and description considerations and demonstrated example
structural, spatial, and direct tree-based approaches [47].

Chart Reader also engaged these design space considerations in
their co-design work on accessible data navigation structures [38]. We
consider these design dimensions as the best starting point for our work,
bridging the gap between research and toolkits.

There are additional research projects that have focused on accessible
data navigation and interaction [14, 33, 34, 37]. These contributions
explore a range of different interaction structures, including lists, trees,

and tables of information as well as direct access methods such as voice
interface commands and simple, pre-determined questions.

2.1.2 Accessible visualization: understanding users

A wide array of emerging research projects investigate screen reader
users needs, barriers, and preferences, and offer guidelines, models, and
considerations for creating accessible data visualizations [4, 11, 25, 32].
Jung et al. offer guidance to consider the order of information in textual
descriptions and during navigation [19]. Kim et al. collected screen
reader users’ questions when interacting with data visualizations, which
could open the door for more natural language data interaction [20].

2.1.3 Accessibility standards and guidelines

In the space of research, there has been a growing interest in developing
guidelines for practitioners [8, 10] and even applying guidelines as
a method of validation alongside human studies evaluations and co-
design [11, 24, 25, 47]. Unfortunately, most accessibility standards and
guidelines do not explicitly engage how to structure data navigation.

Despite this, existing accessibility standards bodies like the Web
Content Accessibility Guidelines do stress the importance of accurate,
functional semantics in order for screen reader users to know how to
interact with elements [41]. For interactive visualizations this means
that button-like or link-like behavior should expressly be made using
elements that are semantically buttons and links. Our system should
be capable of expressing meaningful semantics to users of assistive
technologies.

2.2 Visualization toolkits and technical work

Unfortunately while many data visualization toolkits offer some degree
of accessible navigation and interaction capabilities to developers, very
few toolkits currently out there offer control over the important aspects
of accessible data navigation design. Replicating existing research
and strategies, remediating toolkit ecosystems, and building novel
prototypes are all difficult or impossible to do due to the current lack of
toolkit capabilities.

Existing data visualization toolkits have 3 major limitations that we
wanted to address in the design of Data Navigator:

1. Built on visual materials: toolkits produce either raster or SVG-
based visualizations, neither of which are focused towards de-
signing navigable, semantic structures. As a consequence, many
visualizations are simply entirely inaccessible.

2. Lacking relational expressiveness: When data navigation is
provided, the navigation is based on either a tree or list structure
(see Figure 2). The consequence of this limitation is that many
other non-list and non-tree data relationships become difficult
or impossible to represent without overly tedious navigation or
inefficient architecture.

3. Designed only for screen reader interaction: When accessible
data navigation is provided, it is generally only made possible
through SVG with ARIA (Accessible Rich Internet Application)
attributes. ARIA is primarily only leveraged by screen read-
ers [42]. If a data element can be clicked and performs some form
of function, only direct pointer (mouse and touch) and screen
reader users are included. The consequence of this is that a wide
array of other input devices, many used as assistive technologies
by people with motor and dexterity disabilities, are excluded.

2.2.1 Rich, tree-based approaches

De-coupling rendered, visual structures from meaningful and effective
navigation experiences can provide richer experiences for screen reader
users [47]. Prior research and industry work, with the exception of the
Visa Chart Components library [39], has relied heavily on a 1 to 1 rela-
tionship between structure (the encoded marks) and navigation. This
emerging work is significant, because it paves the way for considering
the design dimensions of accessible data interaction and navigation
without dependence on a visually encoded space.

Olli’s approach has been to build ready-to-go adaptors that auto-
matically build multiple tree structures for a few ecosystems (Vega,

Fig. 2: Existing accessibility trees and lists, shown using node-edge
graph conventions. (*) Denotes only screen reader access. (**) Denotes
screen reader, keyboard-only, and pointer access as well.

Vega-Lite, and Observable Plot) and is entirely uncoupled from a data
visualization’s graphics. Their approach renders navigable tree struc-
tures underneath a visualization.

Other than Olli, Highcharts [16], Visa Chart Components, and Pro-
gressive Accessibility Solutions’ visualization toolkits [14, 37] also pri-
marily provide tree and list navigation structures across all of their chart
types. These toolkits render their structures upon the visualization’s
graphic space. These tools also provide some degree of support for
other assistive technologies and input modalities, although are limited
exclusively to SVG rendering.

Unfortunately, these toolkits lack capabilities for dealing with graph,
relational, spatial, diagrammatic, and geographic data structures.

2.2.2 Serial, list-based approaches

Toolkits like Vega-Lite [31] and Observable Plot only provide basic
screen reader support through ARIA attributes when visualizations are
rendered using SVG. These libraries do not currently provide additional
access to other assistive technologies and input modalities.

Microsoft’s PowerBI largely uses a serial structure, although it has
tree-like elements as well. PowerBI generally provides the same access
to keyboard users as it does to screen readers, although not completely.

2.2.3 No navigation provided

Other visualization tools, like ggplot2 or Datawrapper, Tableau, as well
as both Vega-Lite and Highcharts (when rendering to canvas), produce
raster images and have no navigable structure available. Raster, or
pixel-based graphics have been an accessibility burden since the early
days of graphical user interface development [3]. Practitioners who use
these toolkits can only provide alternative text.

2.3 Considering assistive technologies and input devices

Modern data visualizations may contain functional capabilities such as
the ability to hover, click, select, drag, or perform some analytical tasks
over the elements of the visualization space [31]. Virtually all of these
analytical capabilities are designed for use with a mouse.

Input device consideration can roughly be organized as either pointer-
based (such as a mouse or direct touch) or non-pointer based (which
may employ speech recognition or sequential, discrete navigation such
as with a keyboard). Assistive pointer-based devices, such as a head-
mounted touch stylus, can typically perform any actions that a mouse
can and are therefore served by current interactive visualizations. How-
ever, assistive non-pointer devices, such as a tongue, foot, or breath-
operated switch, are not.

By only providing pointer-based interactivity, modern interactive
visualizations exclude users who leverage non-pointer based input,
who are most commonly people with motor and dexterity disabilities.

And unfortunately, there is a complete lack of engagement with these
populations in the data visualization research community [27].

By comparison, the broader accessibility and HCI research commu-
nities have rich engagement with interaction and assistive technologies
for users with motor and dexterity disabilities. Most research either
focuses broadly on physical peripheral devices or sensors [36], wear-
ables [30], or DIY making and fabrication [18].

The DIY making space involves a broad spectrum of complex in-
put devices and materials, such as fabricating with wood and sensors
for children with disabilities [22], 3D printed materials for rehabilita-
tion professionals [13], and even using produce-based input (such as
bananas and cucumbers) for aging populations [29].

Broadly, both research and practical developments related to acces-
sible, non-pointer input are much further ahead than data visualization
research and practice. Our goal for Data Navigator is to provide a
technical resource towards engaging this under-addressed space.

3 DATA NAVIGATOR: SYSTEM DESIGN

We categorized our system design goals into design considerations for
Structure, Input, and Rendering:

1. Generic structure and navigation specification: Human stud-
ies work has validated that lists, tables, trees, and even pseudo-
treelike and direct structure types are all valuable to users in differ-
ent contexts and with different considerations. Our system must
be able to work with all of these as well as less frequently-used
structures (spatial, relational, geographic, graph, and diagram-
matic).

2. Robust input handling: Blind and low vision users may use
combinations of different assistive technologies, such as mag-
nifiers, voice interfaces, and screen readers. Users with motor
impairments may rely on voice, gesture, eye-tracking, keyboard-
interface peripherals (like sip-and-puffs or switches), or fabricated
devices. Both the developer and user should therefore be able to
leverage and customize a broad range of input types, including the
above as well as fabricated, adaptive, and future input modalities.

3. Flexible rendering and semantics: Visuals may or may not be
necessary to render to demonstrate Data Navigator’s structure.
In addition, much of the latest research has shown that different
screen reader users may prefer different orders of information
and at different levels of verbosity. In addition, the context of
tasks the user is performing as well as the nature of the data itself
may influence the design of semantic descriptions and visual
indications for elements. Data Navigator must provide a high
degree of flexibility and control.

To help bridge the gaps between research and standards knowledge
about best practices and building an effective toolkit for practitioners,
we intend for Data Navigator to provide both exploratory support and
vocabulary correspondence [26].

In particular, our ideal users are developers who specify data visu-
alizations using code. To that aim, we intend to provide exploratory
support through generic, dynamic, and flexible system design deci-
sions. Our system is expressive and customizable, which encourages
exploration of different options.

And we also want the API to include properties that have conceptual
and vocabulary correspondence to our design considerations. Each
design consideration (Structure, Input, and Rendering) are separately
composable, modular subsystems of Data Navigator that can be used
independently or in tandem with one another.

In this paper we present an implementation of our system using
JavaScript, HTML, and CSS on the web. The demonstration of our
system is best suited to the web due to the nature of existing, accessible
building blocks (HTML), which resolve many of the semantic complex-
ities and logic involved in enabling screen readers to programmatically
navigate and announce meaningful information to users. In addition,
many existing visualization toolkits target the web as an output platform
and we believe that this is the best starting point for adoption and use
of Data Navigator. However, this system design could be implemented
as a toolkit in other environments with proper consideration for input
device handling and screen reader semantics.

3.1 Structure

3.1.1 Beyond trees: towards an accessibility graph

The first major contribution in the design of Data Navigator is to use
node-edge data as the substrate for our navigation system.

The most important argument in favor of using a graph-based ap-
proach is that a graph can construct virtually any other data structure
type (see Figure 2), including list, table, tree, spatial, geographic, and
diagrammatic structures. Graphs are generic, which enables them to
represent structures both in current and future interface practices [12].

Fig. 3: A. Map of engineers per capita of US states. B. Tree represen-
tation of the map data where states are listed alphabetically and also
include links to neighboring states. The structure repeats itself if users
navigate in a loop. C. Graph representation with the same navigation
potential without redundant rendering.

To demonstrate our point, the most recent emerging work with
advancements in accessible data navigation used node-edge diagrams
to demonstrate their tree-like structures [38, 47] similar to Figure 2,
Figure 9, and Figure 10. This is because trees are a form of node-edge
graph, but with a root, siblings, parents, and children as sub-types of
nodes that generally have rules for how they relate to one another.

Node-edge graph structures prioritize direct relationships. Examples
of common direct relationships in visualization are boundaries on maps
(see Figure 3), flows and cycles, data with multiple high level tree
structures pointing to the same child datasets (such as Olli in Figure 2),
or even just in diagrammatic, graph-based visualizations.

A graph structure allows for direct access between information ele-
ments that are not just part of the input data or 1:1 rendered elements,
but may also have perceptual or human-attributed meaning. Examples
of this might include semantic or task-based relationships, such as nav-
igating to annotations or callouts, between visual-analytic features like
trends, comparisons, or outliers. Spatial layouts such as intersections
of sets or parallel vectors (see Section 4.3), or even relationships to
information outside of a visualization and back into it (like in Figure 7)
are enabled by a graph structure.

3.1.2 Graph structures are more computationally efficient

Data visualizations often portray information that becomes difficult
to handle when using trees and lists. The distance users must travel
between relational elements is significant in lists while redundancy
when navigating relational elements in trees can be problematic.

As an example of this, often a data table or list of locations are used
in conjunction to a map, such as listing all 50 states alphabetically
along with relevant information. The list itself is expensive to navigate
and may not provide any relationship information about which states
border others, let alone ways to easily and directly access those states.

Part of the visual design justification of using a map instead of a table
is for sighted individuals to understand how geospatial information may
interact with a given variable. The spatial relationships matter. But
when supplementing the list of states with sub-lists for each state’s
bordering states (see Figure 3), it produces redundancy in the rendered
result. The rendered data contains circular connections between nodes
but must render every reference, producing a computational resource
creep and cluttered user experience that can be difficult to exit.

3.1.3 Specific edge instances and generic edges

Fig. 4: An example of how a single edge instance references a navigation
rule and can even have multiple navigation rules. A navigation rule can
be referenced by multiple edges.

In Data Navigator, nodes are objects that always contain a set of
edges, where each edge contains a minimum of 4 pieces of information:
a unique identifier, a source, a target, and navigation rules. These
properties are only accessed when a navigation event occurs on a node
with an edge that contains a reference to a rule for that navigation event.
Navigation rules may be unique to an edge instance or shared among
other edge instances.

The source and target properties of edges are either ids that reference
node instances (see Figure 4) or functions (see Figure 5). Because some
edges in a graph may be directed or not, non-directed graphs can use
source and target properties to arbitrarily refer to either node attached
to an edge.

Generic functions for source or target properties can link nodes to
other nodes based on changing content, structure, or behavior that
may be difficult or impossible to determine before a user navigates the
structure.

Function calling also allows some edges to be purely generic. An
example of a reasonable use case of a purely generic edge is in Figure 5,
where the source is a function which returns the present node and the
target is whichever node the user was on previously. This single edge
may then be part of every node’s set of edges, enabling users to have a
simple undo navigation control without creating an undo edge unique
to every source node.

Using this pattern, it is possible to have fully navigable structures
using only generic edges.

Fig. 5: A generic edge, such as “any-return” can be applied to any node.
Function calls handle dynamically assigning the edge’s source and target
nodes on-demand.

3.2 Input

3.2.1 Abstracted navigation facilitates agnostic input

Navigation rules in Data Navigator (see Figure 4 and Figure 5) are cre-
ated alongside the node-edge structure. Edges reference rules for navi-
gation. However, these rules are generic and agnostic to the specifics

Fig. 6: An example navigation rule to move “left” can be called as a
method by an event from any input modality. Some examples include
common modalities such as touch swiping (A) or speaking “left” (B). This
also includes advanced or future modalities such as gesture recognition
(C) or touch-activated, fabricated interfaces (D).

of input modalities and can be invoked as methods by virtually any
detected user input event (see Figure 6).

Navigation rules are objects with a unique name, ideally as a noun
or verb in natural language that refers to a direction or location, a
movement direction (a binary used to determine moving towards the
source or target of an edge), and optionally any known user inputs that
activate that navigation, such as a keyboard keypress event name.

It is important for a system to abstract navigation events so that
inputs can be uncoupled from the logic of Data Navigator. This allows
higher level software or hardware logic to handle input validation while
Data Navigator is just responsible for acting on validated input.

Later in our first case example (Section 4.1), we demonstrate an
application that handles screen reader, keyboard, mouse and touch
(pointer) swiping, hand gestures, typed text, and speech recognition
input. Abstract navigation namespaces can be called by any of these
input methods.

Additionally, since navigation rules are flexible, end users can also
supply their own key-bind remapping preferences or input validation
rules if developers provide them with an interface.

Because calling a navigation method is abstract, users can even sup-
ply events from their own input modalities as long they have access to
either a text input interface or access to Data Navigator’s navigation
methods. Our demonstration material (in Section 4.1) also includes
handling for DIY fabricated interfaces, which are important in accessi-
bility maker spaces. We chose a produce-based interface [29], since it
was an easy and low cost proof of concept.

We believe that enabling agnostic input provides a rich space for
future research projects. In addition, browser addons and assistive
technologies could both leverage this flexible interface for end users.

3.2.2 Discrete, sequential input opens new avenues

The keyboard interface is considered foundational for many assistive
devices, which leverage this technology for discrete, sequential, non-
pointer navigation and interaction [43]. Desktop screen readers are the
most common example of an assistive technology device that leverages
the keyboard interface, however single or limited button switches, sip-
and-puff devices, on-screen keyboards, and many refreshable braille
displays do as well. Support for the keyboard interface by default in
turn provides all discrete, sequential input devices with access as well.

However by basing Data Navigator’s foundational infrastructure on a
keyboard-like modality, this also provides designers and developers new
avenues to imagine how existing direct, pointer-based, or continuous
inputs can map to discrete, sequential navigation experiences.

For example, with mobile screen readers this already happens: screen
reader users swipe and tap on their screen to sequentially navigate, but
the exact pixel locations of their swiping and tapping generally does
not matter. Their current focus position is discrete and determined by
the screen reader software.

Data Navigator therefore allows for many new possibilities. One
possibility is that sighted mouse and touch users may now also swipe

Fig. 7: An example of how navigation within Data Navigator could use
semantic nodes as hyperlinks to provide access to other areas in an
application. Alabama has a child node “Counties” which is a semantic
HTML link element pointing to a table of counties, outside of Data Navi-
gator’s graph structure. A link is provided to return.

their way through dense plots or use small interfaces (such as on mobile
devices) that may otherwise be too hard to precisely tap. Data Naviga-
tor optionally removes the accessibility barriers sometimes posed by
precision-based input in visualizations.

Data Navigator does not have to be in conflict with precision-based
input, either. A discrete, sequential navigation infrastructure can be
used in tandem with precision-based pointer events as well as instant
access when coupled with voice commands and search features.

3.3 Rendering

Fig. 8: A. The data specified for a node with a reference to separate data
that is used to render that node. B. The node will render as a path at
the specified Cartesian coordinates. C. This rendered node may then be
placed over a visual.

3.3.1 Flexible node semantics provide freedom

Nodes in Data Navigator are semantically flexible. This is because the
marks in a data visualization may represent many things, that are either
dependent on the data or the user interface materials.

Since our toolkit implementation is in JavaScript and HTML, our
map example from Figure 3 might use image semantics for states,

Fig. 9: A. A raster (png) visualization of a stacked bar chart showing how 4 English teams performed across 3 major trophy contests. B. An example
navigation schema that allows children nodes to have 2 parents (two tree structures intersecting), one for contests and one for teams. C. An example
of Data Navigator’s navigation logic abstraction, which allows edge types to have programmatic sources, targets, and rules, such as a single rule that
gives all nodes a edge to exit the visualization. D. An instantiation of the schema, showing all corresponding rendered nodes and their edge types
according to the schema design and navigation rules.

alongside a description of the data relevant to that node. However since
semantics are flexible in this way, Data Navigator could also be used to
integrate into a larger ecosystem, with nodes rendered as hyperlinks to
tables or other elements such as in Figure 7.

The concept of using node-edge graphs can even extend to have
“nodes” that are entirely different parts of a document or tool, as well
as integrated into the explicit structure provided by Data Navigator. In
some accessibility toolkits, nodes are geometries without functional
semantics [31] or list items nested within lists [1]. But in Data Naviga-
tor, nodes can semantically be buttons, links, or any HTML element.
Interactive data visualizations sometimes demand more flexible node
semantics than geometries or lists.

3.3.2 Loose-coupling to visuals enables expressiveness

One of the most significant technical limitations of existing data visual-
ization toolkits with regards to accessibility is that they rely on visual
substrate, or visual materials, in order to produce data visualizations. In
the case of static, raster images such as png files or WebGL and canvas
elements on the web, there are no interface properties at all exposed to
screen readers for programmatic exploration and interaction.

If raster images are used, they generally cannot be changed after
rendering. However, according to web accessibility standards, elements
must have a visual indicator provided when focused [40].

Since Data Navigator navigates using focus, an indicator must be
rendered alongside the node semantics. But what is focused visually
and where it is depends on different design needs.

In Visa Chart Components, chart elements can be selected, so the
focus indication is visible over the existing elements in the chart space.
The design choice to have interactive visual elements located within a
chart or graph is also common in other toolkits that provide accessible
focus indication, such as Highcharts, PowerBI, and SAS Graphics
Accelerator.

However, some visualization toolkits create accessible structures
entirely uncoupled from visual space [1], so focus indication is provided
beneath or beside the chart, not over it.

Due to the different ways that accessibility might be provided, Data
Navigator enables developers to have complete control over the render-
ing of which focus elements they want, in what styling, and where. This
can accommodate both un-coupled and visually-coupled approaches to
focusing and more.

Data Navigator’s focus is uncoupled by default and may even be
used independent of any existing graphics at all. Rendering information
may be passed to Data Navigator for it to render (like in Figure 8) or
developers can provide their own rendered elements and simply use
Data Navigator to move between them.

Because of Data Navigator’s approach to rendering focusable ele-
ments, designers and developers can provide fully customized annota-
tions, graphics, text, or marks that may not be not part of the original
visual space or elements. One example of this might be adding an
outlined path to a collective cross-stack group of bars in a stacked bar
chart (see Figure 8).

Loose-coupling in this way provides robust flexibility to designers
and developers to handle navigation paths and stories through a data
visualization, even in bespoke or hand-crafted ways.

3.3.3 On-demand node rendering is efficient

Practitioners care about performance and so do users. Practitioner
toolkits often focus on lazy-loading techniques where accessibility
elements are rendered on-demand rather than all in-memory up front [1,
9, 47].

Data Navigator’s nodes are rendered on-demand by default. Data
Navigator only renders the node that is about to be focused by the user
and after it is focused, the previously focused node is deleted from
memory. This technique has advantages in cases where datasets are
large or users have lower computational bandwidth available. However,
there are cases where practitioners may want to render all of Data Navi-
gator’s structure in memory, such as server-side rendering or equivalent.
Pre-rendering may be optionally enabled.

4 CASE EXAMPLES WITH DATA NAVIGATOR

We built example prototypes using our JavaScript implementation of
Data Navigator, available open source at our GitHub repository.

Our first two prototype case examples represent some of the most
powerful parts of Data Navigator as a system while reproducing known
and effective data navigation patterns from existing industry and re-
search projects. We provide a final case example as a co-design session
that demonstrates how Data Navigator may be used to rapidly build
new designs.

https://github.com/cmudig/data-navigator

4.1 Augmenting a Static, Raster Visualization

The first case example (shown in Figure 9) builds on an online
JavaScript visualization library, Highcharts. Highcharts already pro-
vides relatively robust data navigation handling out of the box for screen
reader, keyboard, and even voice recognition interface technologies,
such as Dragon Naturally Speaking. However, these capabilities are
only provided when the chart is rendered using SVG. Developers have
several other rendering options available, including WebGL, which is
significantly more efficient [15]. We wanted to demonstrate that Data
Navigator can provide a navigable data structure even if the underlying
visualization is a raster image.

For our case example, we exported a png file using the built in menu
of a sample stacked bar chart retrieved from their online demos [17].
We selected a stacked bar chart because it allows us to demonstrate how
two tree structures may interact and share the same children nodes.

We recorded the data and hand-created all of the geometries and
their spatial coordinates using Figma, by tracing lines over the raster
image’s geometries (see samples of the data and traced geometries
in Figure 8). While this method was efficient for building an initial
prototype, Section 4.2 engages deterministic methods for extracting
and producing the nodes, edges, and descriptions required by Data
Navigator automatically and at scale.

The visualization we selected represents 4 English football teams,
Arsenal, Chelsea, Liverpool, and Manchester United and how many
trophies they won across 3 contests, BPL, FA Cup, and CL.

We chose a schema design that arranged the contests to be navigable
across one dimension of movement (up and down) while the teams
are navigable across a perpendicular dimension of movement (left and
right). This 2-axis style of navigation is used by Highcharts (when
rendering as SVG) and Visa Chart Components. We also chose these
directions because it is coincidental that their visual affordance is
closely coupled with the navigation design (the x axis is ordered left
to right and since the bars are stacked, up and down can move within
the stack). These directions can also be applied to the axis categories
and legend categories as well, moving left and right across the entire
team’s stacks or up and down across the entire contest’s groupings.

Using a keyboard, a user might enter this schema and navigate to
the legend, where they could press Enter to then focus the legend’s
first child, pictured in Figure 8. Pressing up or down navigates in a
circular fashion among the contest groupings. Pressing Enter again
then focuses the first child element of that contest, all of which are in
the Arsenal group, since it is the first group along the x axis. A user can
then navigate up, down, left, and right among children. Pressing L Key
moves the user back up towards the contest while pressing Backspace
moves the user up towards the x axis. The x axis and team groupings
represent the second tree which intersects the first (the contests).

Our first case example includes handling for additional input modal-
ities beyond screen readers and keyboards, including a hand gesture
recognition model, swipe-based touch navigation, and text input (which
can be controlled using voice recognition software).

4.1.1 Discussion

Our first case example demonstrates several of the most important capa-
bilities of Data Navigator, namely that practitioners can add accessible
navigation to previously inaccessible, static, raster image formats and
that a wide variety of input modalities are supported easily.

Widely-used toolkits like Vega-Lite, Highcharts, and D3 [2] allow
practitioners to choose SVG and canvas-based rendering methods. Data
Navigator’s affordances help overcome the lack of semantic structure
in canvas-based rendering, allowing developers to take advantage of its
processing and memory efficiency.

Notably in addition to these capabilities, the visual focus highlighting
added was entirely bespoke (as in Figure 8) and the navigation paths
through the visual were based on our design intentions, not an extracted
view or underlying architecture such as render order. This demonstrates
that our system provides a significant degree of freedom and control
for designers and developers.

As a final discussion point, the resulting visualization contains no
automatically detectable accessibility conformance failures according

to the W3C’s Web Accessibility Initiative’s accessibility evaluation tool,
WAVE [44]. It is important for any technology developed to also meet
minimum requirements for accessibility [10, 24, 25, 47], even when
following best-practices and research.

4.2 Building Data Navigation for a Toolkit Ecosystem

Fig. 10: A. Various charts from Vega-Lite share the same general struc-
tures with each other when rendered using canvas (B) or SVG (C). D.
With Data Navigator, we replicated the existing SVG navigation pattern
(C) but used a canvas-based rendering for the visualization. E. We also
improved the navigation scheme to nest marks within a mark group to
allow users to skip them, if needed.

Our second case example, shown in Figure 10, builds on Vega-Lite.
As shown in Figure 2, Vega-Lite offers basic screen reader navigation
but provides no navigation at all when rendered using canvas.

While it might be a tedious design choice to allow every mark in
a visualization to be serially accessible to screen reader users, we
nevertheless set out to build a generic ingestion function that would
take a Vega-Lite View object and deterministically recreate their existing
SVG navigation structure in Data Navigator. This way users would
have the same experience between SVG rendered charts and all current
and future rendering options that Vega-Lite offers to developers.

Notably, Vega-Lite does not explicitly manipulate the navigation
order at all when rendering with SVG. ARIA is simply provided to
allow screen reader users to access each mark in the visualization in
the order the mark appears in the DOM (which is the order it was
rendered). The legend appears after the marks in our schema for this
reason because Vega-Lite renders the legend after marks. This choice
of ordering is for visual reasons: z-axis placement is currently based
on render order in SVG and Vega-Lite wants their legend visually on
top of the rendered marks.

In addition to mimicking their existing SVG navigation strategy, we
also created a way to nest all of the marks within a group so that users
can skip past them and drill in on-demand, which is a valuable pattern
when dealing with situations where providing a mark-level fidelity of
information may not be relevant to a user’s needs by default [35, 47].

In order to deterministically supply Data Navigator with accurate in-
formation about any given Vega-Lite visualization, we built 3 functions:
one that takes a Vega-Lite View as input and extracts meaningful nodes,
one that produces edges based on those nodes, and one to describe
our nodes in a meaningful way for screen reader users. These generic
functions technically work on all existing Vega-Lite charts, however
some are more useful out of the box than others due to the type of
marks involved.

4.2.1 Discussion

This case example demonstrates that ecosystem-level remediation and
customization is not only possible for toolkit builders but Data Nav-
igator offers robust potential. Data Navigator’s structure, input, and
rendering capabilities are all flexible and can be adjusted to suit the
needs of a specific toolkit’s design and intended use.

Many visualization libraries may not even provide screen reader
accessible SVG using ARIA-based approaches but do have a consis-
tent underlying architectural pattern. Some libraries have a consistent
method for converting data into visual formats, readable text labels, and
interaction logic. Strong contenders would be visualization libraries
popular in online, web-based data science notebooks like ggplot2 in R
or matplotlib for Python, which typically only render rasterized pngs
or semanticless SVG.

Toolkits with consistent underlying architecture would allow toolkit
developers, not just developers who use toolkits, to remediate and
customize their navigation accessibility using a generic approach.

Enabling accessibility at the toolkit level allows all downstream use
of that tool to have better defaults, options, and resources available for
building more accessible outcomes for end users.

Many libraries and toolkits provide users with a level of functional
defaults and abstract conciseness so that users don’t have to worry
about low-level geometric considerations [31].

Data Navigator allows toolkits developers to also provide their users
with abstractions and defaults for accessibility that make sense for their
ecosystem.

Despite our schema recreating a screen reader experience based
on SVG (and improving it), Data Navigator’s additional features also
apply: users are able to leverage a much wider array of input modalities.

Vega-Lite provides many ways to make marks clickable and even
perform complex actions using mouse-based input. While Data Navi-
gator does not engage accessible brush and drag-based inputs, it does
provide keyboard-only access by default, which can be used to make
events previously only accessible to mouse clicking available to many
other technologies. This is an improvement over Vega-Lite’s SVG +
ARIA rendering option.

When measuring performance across test datasets containing 406
and 20,300 data points in a scatter plot, Data Navigator increases
initialization time by ∼0.45 to ∼1.5ms respectively. Our extraction
functions specific to Vega-Lite increase initialization between ∼4.8 and
∼8.5ms respectively. Given that our benchmark testing for Vega-Lite’s
SVG rendering initialized in ∼1,800ms for 20,300 data points and
canvas in ∼700ms, we do not anticipate that Data Navigator will have
a negative impact on performance in most visualization contexts.

4.3 Co-designing Novel Data Navigation Prototypes

Fig. 11: Our material preparation process involved taking a reference
(A), tracing it (B), and rendering it on a tactile display (C).

Recent projects in accessible data navigation have involved extensive
co-design work with people with disabilities, ranging on the magnitude
of months with as many as 10 co-designers at a time [24, 25, 38, 47].

However many visualization experiences may be authored in smaller
scales, with fewer designers, and less time such as the development
of a prototype or demonstration of an emerging idea. In practical or
industry contexts, co-design sessions (and design sessions in general)
may be much shorter. The goal of these co-design sessions is simply to
create an artifact with the artifact’s intended users.

Since our paper is contribution towards practical outcomes, we
simulated a light co-design session with the aim of producing low-
fidelity prototypes of novel data interaction patterns.

4.3.1 Co-design Session Methods and Setup

Fig. 12: A. A reference image from Penrose of a set diagram containing
two sets intersecting. B. A diagram of our proposed structure, with three
levels of information.

Authors Frank Elavsky (sighted) and Lucas Nadolskis (blind) set
out with the goal of developing screen-reader friendly prototypes that
can explore geometric and mathematical models produced by the math
diagramming tool Penrose [46].

Nadolskis is a neuroscience engineer who is a native screen reader
user and uses both mathematical concepts as well as data-related tasks
in his research. Elavsky proposed a series of possible math-based
visualization types produced by Penrose to build prototypes for, and
Nadolskis selected set and vector diagrams as the two worth exploring
first. The justification for this selection is that understanding these two
concepts is important for work in data science, programming, and more
advanced math concepts.

In particular we grounded the context of our contribution in a hypo-
thetical classroom setting, where a screen reader user who is a student
will have access to the equations in both raw text and MathJax. We want
to provide an experience that does not replace the existing resources
screen reader users have to learn in classrooms but rather supplement.

At our disposal for our co-design session was a Dot Pad [6], which
is a refreshable tactile braille display. Our Dot Pad enabled Elavsky
to produce something visual and then translate it into the display for
Nadolskis. Similar to de Greef et al. [5], we used a tactile interface as
an intermediary to help us get a shared sense of the meaningful spatial
features of our figures.

Elavsky started with a reference diagram and then traced a wide
variety of every possible node that might be worth navigating to in the
diagram (see Figure 11).

We selected which nodes were most important in each diagram, how
to navigate between them, and how we wanted to render their visuals
and semantics.

The selection of our problem space, scope of solutions, context
of contribution, general discussion, and preparation of materials took
approximately 12 hours of work over 2 weeks. The exploration of our

prototype design space for our 2 prototypes took 1 hour. Building the
prototypes took 2 hours.

4.3.2 Creating a Navigable Set Diagram

Our first prototype was a set diagram (see Figure 12). For our structure,
we decided that it has 3 important semantic levels: the high level, the
inclusion level, and the exclusion level. The inclusion level is first and
the siblings are all sets or subsets that include other sets. The exclusion
level is beneath and contains sets or subsets that are exclusive to the
sets they belong to, which are accessed by drilling down from a set.

Our schema design starts with a user encountering the root level (1)
and may optionally drill in to the first child of the next level (2) using
the Enter key. The user may navigate siblings at this level using right
and left directions, but this level is not circular (like in Figure 9) to
maintain the spatial relationships. The user may drill in on either set
again to view the non-intersecting portion of that set. Any node can
drill up, towards the root, using Escape or Backspace.

4.3.3 Creating a Navigable Parallel Vectors Diagram

Fig. 13: A. A reference image from Penrose of a parallel vectors diagram.
B. A diagram of our proposed structure, with two main sub-categories of
information: understanding the vectors and their parallels.

Our second prototype was a parallel vectors diagram (see Figure 13).
For the structure of this diagram we created a first level group that
contains each vector and vector sum. The sibling to this grouping is
another group which organizes sub-equations related to calculating
each parallel vector. The sub equations each contain children that pair
the sub equation with the vector it is parallel to.

Similar to Figure 12, this figure maintains spatial relationships along
the x dimension, does not have circular navigation, and allows drilling
in and out.

4.3.4 Discussion

After our co-design sessions, our visual materials and navigation struc-
tures were used in the creation of functional prototypes. We additionally
hand-crafted the descriptions and semantics for each node.

Accessibility work often takes a long time, from co-design to build-
ing to validation. But we believe that a well-articulated and useful
design space, with tools that provide expressiveness and control over
the dimensions of that design space, can improve how this work is done.
The above case example demonstrates how builders who are thinking
about data navigation design can rapidly scaffold prototypes for use in
Data Navigator.

In particular, Data Navigator’s design as a system gave our co-design
sessions vocabulary correspondence. Data Navigator’s language helped
us focus on the nodes, edges, and navigation rules for our structure
while we also explicitly discussed the rendering details of coordinates,
shapes, styling, and semantics for each node. The vocabulary of our
design space directly corresponded with code details required to create
a functional prototype.

We note that this co-design work is not intended to contribute a
validated set of designs. Rather, our contribution with this case ex-
ample is to demonstrate that within the larger ecosystem of a research

venture, Data Navigator is an improvement over designing and building
navigable structures from scratch.

5 LIMITATIONS AND FUTURE WORK

Data Navigator is a technical contribution, a system designed for ap-
propriation [7] and adaptation [45] in different applied contexts. It is,
as Louridas writes, a technical material: a technology that enables new
and useful capabilities [23]. While beyond the scope of the current
paper, a critical next step for future work is to conduct separate stud-
ies with both practitioners and end users to evaluate Data Navigator’s
affordances.

Unlike toolkits that provide an end-to-end development pipeline for
accessible visualization, Data Navigator serves as a low-level building
block or material (like concrete). As such, one potential limitation
of the framework is that it can be used to build both curbs (which
are inaccessible) as well as ramps and curb-cuts (which may be more
broadly accessible).

Even when building more accessible curb-cuts, we stress the im-
portance of actively involving people with disabilities in the design
and validation of new ideas, in line with prior work [24, 25, 28, 47].
For example, while our first two case examples replicate co-designed
and validated existing work, our third case example’s co-designed pro-
totypes would need to be validated with relevant stakeholders before
wider implementation. Our system does not guarantee any sort of
accessibility on its own.

The diverse array of modalities supported by Data Navigator opens
an immediate line of future work in engaging people with a correspond-
ingly diverse set of disabilities. While recent explorations into acces-
sible data visualization have been inspiring, this trend has primarily
focused on the experiences of people with visual disabilities [10,21,27].
More research should be conducted with other populations, particularly
people who leverage assistive technologies beyond screen readers, to
understand how interactive data visualizations can be better designed
to serve them.

Finally, there are significant opportunities to improve the effi-
ciency of our approach, including developing deterministic and non-
deterministic methods to generate node-edge data and navigation rules
from a visualization. Ma’ayan et al. stress in particular that reducing
tedious complexity can contribute to the success of a well-designed
toolkit [26]. Future work should identify areas where graphical inter-
face tools or higher-level specifications can improve the experience of
working with Data Navigator.

6 CONCLUSION

Practitioners at large continue to produce inaccessible interactive data
visualizations, excluding people with disabilities. We believe that the
burden of remediation first starts with the developers who build and
maintain the toolkits that practitioners use.

However, the challenges faced by toolkit builders are significant.
Most toolkits lack an underlying, navigable structure, support for broad
input modalities used by people with disabilities, and meaningful,
semantic rendering.

To engage these limitations we present Data Navigator, a technical
contribution that builds on existing work towards a more generalizable
accessibility-centered toolkit for creating data navigation interfaces.
Data Navigator is designed for use by practitioners who both build and
use existing toolkits and want a tool to make their data visualizations
and interfaces more accessible.

We contribute a high-level system design for our node-edge graph-
based approach that can be used to build data structures that are nav-
igable by a wide array of assistive technologies and input modalities.
Data Navigator is generic and can scaffold list, tree, graph, relational,
spatial, diagrammatic, and geographic types of data structures common
to data visualization.

Our system is designed to encourage both remediation of existing
inaccessible systems and visualization formats as well as help scaffold
the design of novel, future projects. We look forward to further research
that explores the possibilities enabled by Data Navigator.

ACKNOWLEDGMENTS

We want to take this time to express immense gratitude for Reviewer
1, whose generous and thorough feedback helped this project find
its true vision. Elavsky also wants to thank the many folks who have
encouraged this project’s ideation and formation over the last few years.

This work was supported by a grant from Apple, Inc. Any views,
opinions, findings, and conclusions or recommendations expressed in
this material are those of the authors and should not be interpreted as
reflecting the views, policies or position, either expressed or implied,
of Apple Inc.

REFERENCES

[1] M. Blanco, J. Zong, and A. Satyanarayan. Olli: An extensible visualization
library for screen reader accessibility. In IEEE VIS Posters, 2022. 6

[2] M. Bostock, V. Ogievetsky, and J. Heer. D3 data-driven documents. IEEE
Transactions on Visualization and Computer Graphics, 17(12):2301–2309,
Dec. 2011. doi: 10.1109/TVCG.2011.185 7

[3] L. Boyd, W. Boyd, and G. Vanderheiden. The graphical user interface:
Crisis, danger, and opportunity. Journal of Visual Impairment & Blindness,
84(10):496–502, Dec. 1990. doi: 10.1177/0145482x9008401002 3

[4] P. Chundury, B. Patnaik, Y. Reyazuddin, C. Tang, J. Lazar, and N. Elmqvist.
Towards understanding sensory substitution for accessible visualization:
An interview study. IEEE Transactions on Visualization and Computer
Graphics, 28(1):1084–1094, Jan. 2022. doi: 10.1109/tvcg.2021.3114829
2

[5] L. de Greef, D. Moritz, and C. Bennett. Interdependent variables: Re-
motely designing tactile graphics for an accessible workflow. In The 23rd
International ACM SIGACCESS Conference on Computers and Accessi-
bility. ACM, Oct. 2021. doi: 10.1145/3441852.3476468 8

[6] Dot Pad inc. Dot pad - the first tactile graphics display for the visually
impaired. https://pad.dotincorp.com/, 2020. 8

[7] P. Dourish. The appropriation of interactive technologies: Some lessons
from placeless documents. Computer Supported Cooperative Work
(CSCW), 12(4):465–490, 2003. doi: 10.1023/a:1026149119426 9

[8] E. Durant, M. Rouard, E. W. Ganko, C. Muller, A. M. Cleary, A. D. Farmer,
M. Conte, and F. Sabot. Ten simple rules for developing visualization
tools in genomics. PLOS Computational Biology, 18(11), Nov. 2022. doi:
10.1371/journal.pcbi.1010622 2

[9] F. Elavsky. Method and system for accessible data visualization on a web
platform. Defensive Publication Series, 4220, Apr. 2021. 6

[10] F. Elavsky, C. Bennett, and D. Moritz. How accessible is my visualization?
evaluating visualization accessibility with chartability. Computer Graphics
Forum, 41(3):57–70, June 2022. doi: 10.1111/cgf.14522 2, 7, 9

[11] D. Fan, A. F. Siu, H. Rao, G. S.-H. Kim, X. Vazquez, L. Greco,
S. O'Modhrain, and S. Follmer. The accessibility of data visualizations on
the web for screen reader users: Practices and experiences during COVID-
19. ACM Transactions on Accessible Computing, 16(1):1–29, Mar. 2023.
doi: 10.1145/3557899 2

[12] E. R. Gansner and S. C. North. An open graph visualization system and its
applications to software engineering. Software: Practice and Experience,
30(11):1203–1233, 2000. doi: 10.1002/1097-024x(200009)30:11<1203::
aid-spe338>3.0.co;2-n 4

[13] S. Giraud and C. Jouffrais. Empowering low-vision rehabilitation pro-
fessionals with “do-it-yourself” methods. In Lecture Notes in Computer
Science, pp. 61–68. Springer International Publishing, 2016. doi: 10.
1007/978-3-319-41267-2_9 3

[14] A. J. R. Godfrey, P. Murrell, and V. Sorge. An accessible interaction
model for data visualisation in statistics. In Lecture Notes in Computer
Science, pp. 590–597. Springer International Publishing, 2018. doi: 10.
1007/978-3-319-94277-3_92 2, 3

[15] Highsoft. Highcharts: Render millions of chart points with the
boost module. https://www.highcharts.com/blog/tutorials/
highcharts-high-performance-boost-module/. Accessed: 2022-
11-20. 7

[16] Highsoft. Highcharts accessibility module: information and
demos. https://highcharts.com/docs/accessibility/
accessibility-module, 2018. Accessed: 2021-09-06. 3

[17] Highsoft. Stacked column demo. https://www.highcharts.com/
demo/column-stacked, 2018. Accessed: 2022-12-31. 7

[18] A. Hurst and S. Kane. Making "making" accessible. In Proceedings of the
12th International Conference on Interaction Design and Children, IDC

’13, pp. 635–638. Association for Computing Machinery, New York, NY,
USA, 6 2013. Accessed: 2021-09-03. 3

[19] C. Jung, S. Mehta, A. Kulkarni, Y. Zhao, and Y.-S. Kim. Communicating
visualizations without visuals: Investigation of visualization alternative
text for people with visual impairments. IEEE Transactions on Visual-
ization and Computer Graphics, 28(1):1095–1105, Jan. 2022. doi: 10.
1109/tvcg.2021.3114846 2

[20] J. Kim, A. Srinivasan, N. W. Kim, and Y.-S. Kim. Exploring chart question
answering for blind and low vision users. In Proceedings of the 2023 CHI
Conference on Human Factors in Computing Systems. ACM, Apr. 2023.
doi: 10.1145/3544548.3581532 2

[21] N. W. Kim, S. C. Joyner, A. Riegelhuth, and Y. Kim. Accessible visual-
ization: Design space, opportunities, and challenges. Computer Graphics
Forum, 40(3):173–188, June 2021. doi: 10.1111/cgf.14298 9

[22] C.-Y. Lin and Y.-M. Chang. Increase in physical activities in kindergarten
children with cerebral palsy by employing MaKey–MaKey-based task
systems. Research in Developmental Disabilities, 35(9):1963–1969, Sept.
2014. doi: 10.1016/j.ridd.2014.04.028 3

[23] P. Louridas. Design as bricolage: anthropology meets design thinking.
Design Studies, 20(6):517–535, Nov. 1999. doi: 10.1016/s0142-694x(98)
00044-1 9

[24] A. Lundgard, C. Lee, and A. Satyanarayan. Sociotechnical considerations
for accessible visualization design. In 2019 IEEE Visualization Conference
(VIS). IEEE, Oct. 2019. doi: 10.1109/visual.2019.8933762 2, 7, 8, 9

[25] A. Lundgard and A. Satyanarayan. Accessible visualization via natural
language descriptions: A four-level model of semantic content. IEEE
Transactions on Visualization and Computer Graphics, 28(1):1073–1083,
Jan. 2022. doi: 10.1109/tvcg.2021.3114770 2, 7, 8, 9

[26] D. Ma’ayan, W. Ni, K. Ye, C. Kulkarni, and J. Sunshine. How domain
experts create conceptual diagrams and implications for tool design. In
Proceedings of the 2020 CHI Conference on Human Factors in Computing
Systems, CHI ’20, p. 1–14. Association for Computing Machinery, New
York, NY, USA, 2020. doi: 10.1145/3313831.3376253 3, 9

[27] K. Marriott, B. Lee, M. Butler, E. Cutrell, K. Ellis, C. Goncu, M. Hearst,
K. McCoy, and D. A. Szafir. Inclusive data visualization for people with
disabilities. Interactions, 28(3):47–51, Apr. 2021. doi: 10.1145/3457875
2, 3, 9

[28] B. E. Reid. The curb-cut effect and the perils of accessibility without
disability. SSRN Electronic Journal, 2022. doi: 10.2139/ssrn.4262991 9

[29] Y. Rogers, J. Paay, M. Brereton, K. L. Vaisutis, G. Marsden, and F. Vetere.
Never too old. In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems. ACM, Apr. 2014. doi: 10.1145/2556288.
2557184 3, 5

[30] Z. Sarsenbayeva, N. V. Berkel, E. Velloso, J. Goncalves, and V. Kostakos.
Methodological standards in accessibility research on motor impairments:
A survey. ACM Computing Surveys, 55(7):1–35, Dec. 2022. doi: 10.
1145/3543509 3

[31] A. Satyanarayan, D. Moritz, K. Wongsuphasawat, and J. Heer. Vega-lite:
A grammar of interactive graphics. IEEE Transactions on Visualization
and Computer Graphics, 23(1):341–350, Jan. 2017. doi: 10.1109/tvcg.
2016.2599030 3, 6, 8

[32] A. Sharif, S. S. Chintalapati, J. O. Wobbrock, and K. Reinecke. Under-
standing screen-reader users’ experiences with online data visualizations.
In The 23rd International ACM SIGACCESS Conference on Computers
and Accessibility. ACM, Oct. 2021. doi: 10.1145/3441852.3471202 2

[33] A. Sharif and B. Forouraghi. evoGraphs — a jQuery plugin to create web
accessible graphs. In 2018 15th IEEE Annual Consumer Communications
Networking Conference CCNC. IEEE, Jan. 2018. doi: 10.1109/ccnc.2018.
8319239 2

[34] A. Sharif, O. H. Wang, A. T. Muongchan, K. Reinecke, and J. O. Wob-
brock. VoxLens: Making online data visualizations accessible with an
interactive JavaScript plug-in. In CHI Conference on Human Factors in
Computing Systems. ACM, Apr. 2022. doi: 10.1145/3491102.3517431 2

[35] B. Shneiderman. The eyes have it: A task by data type taxonomy for
information visualizations. In The Craft of Information Visualization, pp.
364–371. Elsevier, 2003. doi: 10.1016/b978-155860915-0/50046-9 7

[36] A.-I. Siean and R.-D. Vatavu. Wearable interactions for users with motor
impairments: Systematic review, inventory, and research implications. In
The 23rd International ACM SIGACCESS Conference on Computers and
Accessibility. ACM, Oct. 2021. doi: 10.1145/3441852.3471212 3

[37] V. Sorge. Polyfilling accessible chemistry diagrams. In Lecture Notes in
Computer Science, pp. 43–50. Springer International Publishing, 2016.
doi: 10.1007/978-3-319-41264-1_6 2, 3

https://doi.org/10.1109/TVCG.2011.185
https://doi.org/10.1177/0145482x9008401002
https://doi.org/10.1109/tvcg.2021.3114829
https://doi.org/10.1145/3441852.3476468
https://pad.dotincorp.com/
https://doi.org/10.1023/a:1026149119426
https://doi.org/10.1371/journal.pcbi.1010622
https://doi.org/10.1371/journal.pcbi.1010622
https://doi.org/10.1111/cgf.14522
https://doi.org/10.1145/3557899
https://doi.org/10.1002/1097-024x(200009)30:11<1203::aid-spe338>3.0.co;2-n
https://doi.org/10.1002/1097-024x(200009)30:11<1203::aid-spe338>3.0.co;2-n
https://doi.org/10.1007/978-3-319-41267-2_9
https://doi.org/10.1007/978-3-319-41267-2_9
https://doi.org/10.1007/978-3-319-94277-3_92
https://doi.org/10.1007/978-3-319-94277-3_92
https://www.highcharts.com/blog/tutorials/highcharts-high-performance-boost-module/
https://www.highcharts.com/blog/tutorials/highcharts-high-performance-boost-module/
https://highcharts.com/docs/accessibility/accessibility-module
https://highcharts.com/docs/accessibility/accessibility-module
https://www.highcharts.com/demo/column-stacked
https://www.highcharts.com/demo/column-stacked
https://doi.org/10.1109/tvcg.2021.3114846
https://doi.org/10.1109/tvcg.2021.3114846
https://doi.org/10.1145/3544548.3581532
https://doi.org/10.1111/cgf.14298
https://doi.org/10.1016/j.ridd.2014.04.028
https://doi.org/10.1016/s0142-694x(98)00044-1
https://doi.org/10.1016/s0142-694x(98)00044-1
https://doi.org/10.1109/visual.2019.8933762
https://doi.org/10.1109/tvcg.2021.3114770
https://doi.org/10.1145/3313831.3376253
https://doi.org/10.1145/3457875
https://doi.org/10.2139/ssrn.4262991
https://doi.org/10.1145/2556288.2557184
https://doi.org/10.1145/2556288.2557184
https://doi.org/10.1145/3543509
https://doi.org/10.1145/3543509
https://doi.org/10.1109/tvcg.2016.2599030
https://doi.org/10.1109/tvcg.2016.2599030
https://doi.org/10.1145/3441852.3471202
https://doi.org/10.1109/ccnc.2018.8319239
https://doi.org/10.1109/ccnc.2018.8319239
https://doi.org/10.1145/3491102.3517431
https://doi.org/10.1016/b978-155860915-0/50046-9
https://doi.org/10.1145/3441852.3471212
https://doi.org/10.1007/978-3-319-41264-1_6

[38] J. R. Thompson, J. J. Martinez, A. Sarikaya, E. Cutrell, and B. Lee. Chart
reader: Accessible visualization experiences designed with screen reader
users. In Proceedings of the 2023 CHI Conference on Human Factors in
Computing Systems. ACM, Apr. 2023. doi: 10.1145/3544548.3581186 2,
4, 8

[39] Visa. Visa Chart Components. https://github.com/visa/
visa-chart-components, 2022. Accessed: 2022-12-01. 2

[40] WAI. Understanding success criterion 2.4.7: focus-visible. WCAG stan-
dard, W3C, 2016. Accessed: 2022-12-11. 6

[41] WAI. Understanding success criterion 4.1.2: name, role, value. WCAG
standard, W3C, 2016. Accessed: 2022-03-04. 2

[42] WAI. Accessible rich internet applications (WAI-ARIA 1.1). Technical
report, W3C, 2017. Accessed: 2022-12-11. 2

[43] WAI. Understanding success criterion 2.1.1: keyboard. WCAG standard,
W3C, 2017. Accessed: 2022-12-11. 5

[44] WebAIM. WAVE, the web accessibility evaluation tool. https://wave.
webaim.org/. Accessed: 2023-01-10. 7

[45] J. O. Wobbrock, S. K. Kane, K. Z. Gajos, S. Harada, and J. Froehlich.
Ability-based design. ACM Transactions on Accessible Computing, 3(3):1–
27, Apr. 2011. doi: 10.1145/1952383.1952384 9

[46] K. Ye, W. Ni, M. Krieger, D. Ma'ayan, J. Wise, J. Aldrich, J. Sunshine,
and K. Crane. Penrose. ACM Transactions on Graphics, 39(4), Aug. 2020.
doi: 10.1145/3386569.3392375 8

[47] J. Zong, C. Lee, A. Lundgard, J. Jang, D. Hajas, and A. Satyanarayan.
Rich screen reader experiences for accessible data visualization. Computer
Graphics Forum, 41(3):15–27, June 2022. doi: 10.1111/cgf.14519 2, 4, 6,
7, 8, 9

https://doi.org/10.1145/3544548.3581186
https://github.com/visa/visa-chart-components
https://github.com/visa/visa-chart-components
https://wave.webaim.org/
https://wave.webaim.org/
https://doi.org/10.1145/1952383.1952384
https://doi.org/10.1145/3386569.3392375
https://doi.org/10.1111/cgf.14519

	Introduction
	Related Work
	Accessibility research and standards in visualization
	Accessible navigation design considerations
	Accessible visualization: understanding users
	Accessibility standards and guidelines

	Visualization toolkits and technical work
	Rich, tree-based approaches
	Serial, list-based approaches
	No navigation provided

	Considering assistive technologies and input devices

	Data Navigator: System Design
	Structure
	Beyond trees: towards an accessibility graph
	Graph structures are more computationally efficient
	Specific edge instances and generic edges

	Input
	Abstracted navigation facilitates agnostic input
	Discrete, sequential input opens new avenues

	Rendering
	Flexible node semantics provide freedom
	Loose-coupling to visuals enables expressiveness
	On-demand node rendering is efficient

	Case Examples with Data Navigator
	Augmenting a Static, Raster Visualization
	Discussion

	Building Data Navigation for a Toolkit Ecosystem
	Discussion

	Co-designing Novel Data Navigation Prototypes
	Co-design Session Methods and Setup
	Creating a Navigable Set Diagram
	Creating a Navigable Parallel Vectors Diagram
	Discussion

	Limitations and Future Work
	Conclusion

