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Fig. 1: Data Navigator provides data visualization libraries and toolkits with accessible data navigation structures, robust input handling, 
and flexible semantic rendering capabilities. 

Abstract—Making data visualizations accessible for people with disabilities remains a significant challenge in current practitioner efforts. 
Existing visualizations often lack an underlying navigable structure, fail to engage necessary input modalities, and rely heavily on 
visual-only rendering practices. These limitations exclude people with disabilities, especially users of assistive technologies. To address 
these challenges, we present Data Navigator: a system built on a dynamic graph structure, enabling developers to construct navigable 
lists, trees, graphs, and flows as well as spatial, diagrammatic, and geographic relations. Data Navigator supports a wide range of input 
modalities: screen reader, keyboard, speech, gesture detection, and even fabricated assistive devices. We present 3 case examples 
with Data Navigator, demonstrating we can provide accessible navigation structures on top of raster images, integrate with existing 
toolkits at scale, and rapidly develop novel prototypes. Data Navigator is a step towards making accessible data visualizations easier to 
design and implement. 

Index Terms—accessibility, visualization, tools, technical materials, platforms, data interaction 

1 INTRODUCTION 

While there is a growing interest in making data visualizations more 
accessible for people with disabilities, current toolkit and practitioner 
efforts have not risen to the challenge at scale. Major data visualization 
tools and ecosystems predominantly produce inaccessible artifacts for 
many users with disabilities. We believe this is largely a gap caused by 
a lack of underlying structure in most visualizations, failure to engage 
the input modalities used by people with disabilities, and over-reliance 
on visual-only rendering practices. 

Users who are blind or low vision commonly use screen readers and 
users with motor and dexterity disabilities often do not use "pointer" 
(precise mouse and touch) based input technology when interacting 
with digital interfaces. Many users with motor and dexterity disabilities 
use discrete navigation controls, either sequentially using keyboard-like 
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input, or directly using voice or text commands. 
Most interactive visualizations simply focus on pointer-based input: 

they can be clicked or tapped, hovered, and selected in order to per-
form analytical tasks. This excludes non-pointer input technologies. 
These devices require consideration for the navigation structure and 
underlying semantics of a visual interface. 

However, building navigable spatial and relational interfaces is a 
difficult task with current resources. 

Raster images, arguably the most common format for creating and 
disseminating data visualizations, currently cannot be made into navi-
gable structures. These are only described using alt text, which limits 
their usefulness to screen reader users. 

Unfortunately, more accessible rendering formats like SVG with 
ARIA (accessible rich internet applications) properties are more re-
source intensive than raster approaches, like WebGL-powered HTML 
canvas or pre-rendered PNG files. SVG puts a burden on low-bandwidth 
users and a ceiling on how many data points can be rendered in memory. 

In addition, ARIA itself has 2 major limitations. First, when added 
to interface elements, ARIA only provides screen reader access, which 
means that developers must build a solution from scratch for other navi-
gation input modalities. Second, ARIA’s linear navigation structure can 
be time-consuming for screen reader users if a visualization has many 
elements. This may impede how essential insights and relationships 
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are understood [14, 19, 32, 37, 38, 47]. 
Some emerging approaches have sought to address this serial limita-

tion of data navigation and provide richer experiences for screen reader 
users [14, 37, 38, 47]. However, these approaches rely on a tree-based 
navigation structure which is often not an appropriate choice for visual-
izations of relational, spatial, diagrammatic, or geographic data. Many 
visualization structures are currently unaddressed. 

Zong et al. stress that in order to realize richer, more accessible data 
visualizations, the responsibility must be shared by “toolkit makers,” the 
practitioners who design, build, and maintain visualization authoring 
technologies [47]. Our contribution is towards that aim, to make more 
accessible data experiences easier to design and implement within 
existing visualization work. 

We present Data Navigator. Data Navigator is a toolkit built on 
a graph data structure, within which a broad array of common data 
structures can be expressed (including list, tree, graph, relational, spa-
tial, diagrammatic, and geographic structures). Data Navigator also 
exposes an interface that supports interactions via screen reader, key-
board, gesture-based touch, motion gesture, voice, as well as fabricated 
and DIY input modalities. Data Navigator provides expressive structure 
and semantic rendering capabilities as well as the ability for developers 
to use their own, preferred method of rendering. 

Data Navigator builds upon human-studies motivated work on ac-
cessible navigation [38, 47] towards a more generalizable resource for 
visualization practitioners. We contribute a high-level system design 
for our node-edge graph-based solution as well as an implementation 
of this system on the web, using JavaScript, HTML, and CSS. Through 
our case examples we also demonstrate that our generalized approach 
is suitable for replication of existing best practices from other systems, 
integration into existing visualization toolkit ecosystems, and devel-
opment of novel prototypes for accessible navigation. We illustrate 
how Data Navigator’s use of generic edges, dynamic navigation rules, 
and loose coupling between navigation and visual encodings provides 
practitioners robust, expressive, control over their system designs. 

2 RELATED WORK 

Our contribution is an attempt to bridge the gap between research 
and practice more effectively across broad ecosystems in order to 
enable deeper and more expressive accessible data navigation interfaces. 
Below we outline the prior research and standards that inform our 
project, a breakdown of existing visualization toolkit approaches to 
data navigation, and then accessible input device considerations. 

2.1 Accessibility research and standards in visualization 

Research and standards are both somewhat limited by a strong bias 
towards visual disabilities. In Chartability, 36 of the 50 criteria related 
to accessible visualization considerations involve visual disabilities [10, 
11]. Marriott et al. also found that visual disability considerations 
are the primary focus of data visualization literature [27], leaving the 
barriers that many other demographics face unstudied. 

However, despite the heavy focus on visual disabilities, the work 
that does exist in the visualization community is deeply valuable and 
serves as an important starting point for our technical contribution. 

2.1.1 Accessible navigation design considerations 

Zong et al.’s research, which was conducted as in-depth co-design 
work and validated in usability studies involving blind participants, 
presented a design space for accessible, rich screen reader navigation 
of data visualizations. They organized their design space into structure, 
navigation, and description considerations and demonstrated example 
structural, spatial, and direct tree-based approaches [47]. 

Chart Reader also engaged these design space considerations in 
their co-design work on accessible data navigation structures [38]. We 
consider these design dimensions as the best starting point for our work, 
bridging the gap between research and toolkits. 

There are additional research projects that have focused on accessible 
data navigation and interaction [14, 33, 34, 37]. These contributions 
explore a range of different interaction structures, including lists, trees, 

and tables of information as well as direct access methods such as voice 
interface commands and simple, pre-determined questions. 

2.1.2 Accessible visualization: understanding users 

A wide array of emerging research projects investigate screen reader 
users needs, barriers, and preferences, and offer guidelines, models, and 
considerations for creating accessible data visualizations [4, 11, 25, 32]. 
Jung et al. offer guidance to consider the order of information in textual 
descriptions and during navigation [19]. Kim et al. collected screen 
reader users’ questions when interacting with data visualizations, which 
could open the door for more natural language data interaction [20]. 

2.1.3 Accessibility standards and guidelines 

In the space of research, there has been a growing interest in developing 
guidelines for practitioners [8, 10] and even applying guidelines as 
a method of validation alongside human studies evaluations and co-
design [11, 24, 25, 47]. Unfortunately, most accessibility standards and 
guidelines do not explicitly engage how to structure data navigation. 

Despite this, existing accessibility standards bodies like the Web 
Content Accessibility Guidelines do stress the importance of accurate, 
functional semantics in order for screen reader users to know how to 
interact with elements [41]. For interactive visualizations this means 
that button-like or link-like behavior should expressly be made using 
elements that are semantically buttons and links. Our system should 
be capable of expressing meaningful semantics to users of assistive 
technologies. 

2.2 Visualization toolkits and technical work 

Unfortunately while many data visualization toolkits offer some degree 
of accessible navigation and interaction capabilities to developers, very 
few toolkits currently out there offer control over the important aspects 
of accessible data navigation design. Replicating existing research 
and strategies, remediating toolkit ecosystems, and building novel 
prototypes are all difficult or impossible to do due to the current lack of 
toolkit capabilities. 

Existing data visualization toolkits have 3 major limitations that we 
wanted to address in the design of Data Navigator: 

1. Built on visual materials: toolkits produce either raster or SVG-
based visualizations, neither of which are focused towards de-
signing navigable, semantic structures. As a consequence, many 
visualizations are simply entirely inaccessible. 

2. Lacking relational expressiveness: When data navigation is 
provided, the navigation is based on either a tree or list structure 
(see Figure 2). The consequence of this limitation is that many 
other non-list and non-tree data relationships become difficult 
or impossible to represent without overly tedious navigation or 
inefficient architecture. 

3. Designed only for screen reader interaction: When accessible 
data navigation is provided, it is generally only made possible 
through SVG with ARIA (Accessible Rich Internet Application) 
attributes. ARIA is primarily only leveraged by screen read-
ers [42]. If a data element can be clicked and performs some form 
of function, only direct pointer (mouse and touch) and screen 
reader users are included. The consequence of this is that a wide 
array of other input devices, many used as assistive technologies 
by people with motor and dexterity disabilities, are excluded. 

2.2.1 Rich, tree-based approaches 

De-coupling rendered, visual structures from meaningful and effective 
navigation experiences can provide richer experiences for screen reader 
users [47]. Prior research and industry work, with the exception of the 
Visa Chart Components library [39], has relied heavily on a 1 to 1 rela-
tionship between structure (the encoded marks) and navigation. This 
emerging work is significant, because it paves the way for considering 
the design dimensions of accessible data interaction and navigation 
without dependence on a visually encoded space. 

Olli’s approach has been to build ready-to-go adaptors that auto-
matically build multiple tree structures for a few ecosystems (Vega, 



Fig. 2: Existing accessibility trees and lists, shown using node-edge 
graph conventions. (*) Denotes only screen reader access. (**) Denotes 
screen reader, keyboard-only, and pointer access as well. 

Vega-Lite, and Observable Plot) and is entirely uncoupled from a data 
visualization’s graphics. Their approach renders navigable tree struc-
tures underneath a visualization. 

Other than Olli, Highcharts [16], Visa Chart Components, and Pro-
gressive Accessibility Solutions’ visualization toolkits [14, 37] also pri-
marily provide tree and list navigation structures across all of their chart 
types. These toolkits render their structures upon the visualization’s 
graphic space. These tools also provide some degree of support for 
other assistive technologies and input modalities, although are limited 
exclusively to SVG rendering. 

Unfortunately, these toolkits lack capabilities for dealing with graph, 
relational, spatial, diagrammatic, and geographic data structures. 

2.2.2 Serial, list-based approaches 

Toolkits like Vega-Lite [31] and Observable Plot only provide basic 
screen reader support through ARIA attributes when visualizations are 
rendered using SVG. These libraries do not currently provide additional 
access to other assistive technologies and input modalities. 

Microsoft’s PowerBI largely uses a serial structure, although it has 
tree-like elements as well. PowerBI generally provides the same access 
to keyboard users as it does to screen readers, although not completely. 

2.2.3 No navigation provided 

Other visualization tools, like ggplot2 or Datawrapper, Tableau, as well 
as both Vega-Lite and Highcharts (when rendering to canvas), produce 
raster images and have no navigable structure available. Raster, or 
pixel-based graphics have been an accessibility burden since the early 
days of graphical user interface development [3]. Practitioners who use 
these toolkits can only provide alternative text. 

2.3 Considering assistive technologies and input devices 

Modern data visualizations may contain functional capabilities such as 
the ability to hover, click, select, drag, or perform some analytical tasks 
over the elements of the visualization space [31]. Virtually all of these 
analytical capabilities are designed for use with a mouse. 

Input device consideration can roughly be organized as either pointer-
based (such as a mouse or direct touch) or non-pointer based (which 
may employ speech recognition or sequential, discrete navigation such 
as with a keyboard). Assistive pointer-based devices, such as a head-
mounted touch stylus, can typically perform any actions that a mouse 
can and are therefore served by current interactive visualizations. How-
ever, assistive non-pointer devices, such as a tongue, foot, or breath-
operated switch, are not. 

By only providing pointer-based interactivity, modern interactive 
visualizations exclude users who leverage non-pointer based input, 
who are most commonly people with motor and dexterity disabilities. 

And unfortunately, there is a complete lack of engagement with these 
populations in the data visualization research community [27]. 

By comparison, the broader accessibility and HCI research commu-
nities have rich engagement with interaction and assistive technologies 
for users with motor and dexterity disabilities. Most research either 
focuses broadly on physical peripheral devices or sensors [36], wear-
ables [30], or DIY making and fabrication [18]. 

The DIY making space involves a broad spectrum of complex in-
put devices and materials, such as fabricating with wood and sensors 
for children with disabilities [22], 3D printed materials for rehabilita-
tion professionals [13], and even using produce-based input (such as 
bananas and cucumbers) for aging populations [29]. 

Broadly, both research and practical developments related to acces-
sible, non-pointer input are much further ahead than data visualization 
research and practice. Our goal for Data Navigator is to provide a 
technical resource towards engaging this under-addressed space. 

3 DATA NAVIGATOR: SYSTEM DESIGN 

We categorized our system design goals into design considerations for 
Structure, Input, and Rendering: 

1. Generic structure and navigation specification: Human stud-
ies work has validated that lists, tables, trees, and even pseudo-
treelike and direct structure types are all valuable to users in differ-
ent contexts and with different considerations. Our system must 
be able to work with all of these as well as less frequently-used 
structures (spatial, relational, geographic, graph, and diagram-
matic). 

2. Robust input handling: Blind and low vision users may use 
combinations of different assistive technologies, such as mag-
nifiers, voice interfaces, and screen readers. Users with motor 
impairments may rely on voice, gesture, eye-tracking, keyboard-
interface peripherals (like sip-and-puffs or switches), or fabricated 
devices. Both the developer and user should therefore be able to 
leverage and customize a broad range of input types, including the 
above as well as fabricated, adaptive, and future input modalities. 

3. Flexible rendering and semantics: Visuals may or may not be 
necessary to render to demonstrate Data Navigator’s structure. 
In addition, much of the latest research has shown that different 
screen reader users may prefer different orders of information 
and at different levels of verbosity. In addition, the context of 
tasks the user is performing as well as the nature of the data itself 
may influence the design of semantic descriptions and visual 
indications for elements. Data Navigator must provide a high 
degree of flexibility and control. 

To help bridge the gaps between research and standards knowledge 
about best practices and building an effective toolkit for practitioners, 
we intend for Data Navigator to provide both exploratory support and 
vocabulary correspondence [26]. 

In particular, our ideal users are developers who specify data visu-
alizations using code. To that aim, we intend to provide exploratory 
support through generic, dynamic, and flexible system design deci-
sions. Our system is expressive and customizable, which encourages 
exploration of different options. 

And we also want the API to include properties that have conceptual 
and vocabulary correspondence to our design considerations. Each 
design consideration (Structure, Input, and Rendering) are separately 
composable, modular subsystems of Data Navigator that can be used 
independently or in tandem with one another. 

In this paper we present an implementation of our system using 
JavaScript, HTML, and CSS on the web. The demonstration of our 
system is best suited to the web due to the nature of existing, accessible 
building blocks (HTML), which resolve many of the semantic complex-
ities and logic involved in enabling screen readers to programmatically 
navigate and announce meaningful information to users. In addition, 
many existing visualization toolkits target the web as an output platform 
and we believe that this is the best starting point for adoption and use 
of Data Navigator. However, this system design could be implemented 
as a toolkit in other environments with proper consideration for input 
device handling and screen reader semantics. 



3.1 Structure 

3.1.1 Beyond trees: towards an accessibility graph 

The first major contribution in the design of Data Navigator is to use 
node-edge data as the substrate for our navigation system. 

The most important argument in favor of using a graph-based ap-
proach is that a graph can construct virtually any other data structure 
type (see Figure 2), including list, table, tree, spatial, geographic, and 
diagrammatic structures. Graphs are generic, which enables them to 
represent structures both in current and future interface practices [12]. 

Fig. 3: A. Map of engineers per capita of US states. B. Tree represen-
tation of the map data where states are listed alphabetically and also 
include links to neighboring states. The structure repeats itself if users 
navigate in a loop. C. Graph representation with the same navigation 
potential without redundant rendering. 

To demonstrate our point, the most recent emerging work with 
advancements in accessible data navigation used node-edge diagrams 
to demonstrate their tree-like structures [38, 47] similar to Figure 2, 
Figure 9, and Figure 10. This is because trees are a form of node-edge 
graph, but with a root, siblings, parents, and children as sub-types of 
nodes that generally have rules for how they relate to one another. 

Node-edge graph structures prioritize direct relationships. Examples 
of common direct relationships in visualization are boundaries on maps 
(see Figure 3), flows and cycles, data with multiple high level tree 
structures pointing to the same child datasets (such as Olli in Figure 2), 
or even just in diagrammatic, graph-based visualizations. 

A graph structure allows for direct access between information ele-
ments that are not just part of the input data or 1:1 rendered elements, 
but may also have perceptual or human-attributed meaning. Examples 
of this might include semantic or task-based relationships, such as nav-
igating to annotations or callouts, between visual-analytic features like 
trends, comparisons, or outliers. Spatial layouts such as intersections 
of sets or parallel vectors (see Section 4.3), or even relationships to 
information outside of a visualization and back into it (like in Figure 7) 
are enabled by a graph structure. 

3.1.2 Graph structures are more computationally efficient 

Data visualizations often portray information that becomes difficult 
to handle when using trees and lists. The distance users must travel 
between relational elements is significant in lists while redundancy 
when navigating relational elements in trees can be problematic. 

As an example of this, often a data table or list of locations are used 
in conjunction to a map, such as listing all 50 states alphabetically 
along with relevant information. The list itself is expensive to navigate 
and may not provide any relationship information about which states 
border others, let alone ways to easily and directly access those states. 

Part of the visual design justification of using a map instead of a table 
is for sighted individuals to understand how geospatial information may 
interact with a given variable. The spatial relationships matter. But 
when supplementing the list of states with sub-lists for each state’s 
bordering states (see Figure 3), it produces redundancy in the rendered 
result. The rendered data contains circular connections between nodes 
but must render every reference, producing a computational resource 
creep and cluttered user experience that can be difficult to exit. 

3.1.3 Specific edge instances and generic edges 

Fig. 4: An example of how a single edge instance references a navigation 
rule and can even have multiple navigation rules. A navigation rule can 
be referenced by multiple edges. 

In Data Navigator, nodes are objects that always contain a set of 
edges, where each edge contains a minimum of 4 pieces of information: 
a unique identifier, a source, a target, and navigation rules. These 
properties are only accessed when a navigation event occurs on a node 
with an edge that contains a reference to a rule for that navigation event. 
Navigation rules may be unique to an edge instance or shared among 
other edge instances. 

The source and target properties of edges are either ids that reference 
node instances (see Figure 4) or functions (see Figure 5). Because some 
edges in a graph may be directed or not, non-directed graphs can use 
source and target properties to arbitrarily refer to either node attached 
to an edge. 

Generic functions for source or target properties can link nodes to 
other nodes based on changing content, structure, or behavior that 
may be difficult or impossible to determine before a user navigates the 
structure. 

Function calling also allows some edges to be purely generic. An 
example of a reasonable use case of a purely generic edge is in Figure 5, 
where the source is a function which returns the present node and the 
target is whichever node the user was on previously. This single edge 
may then be part of every node’s set of edges, enabling users to have a 
simple undo navigation control without creating an undo edge unique 
to every source node. 

Using this pattern, it is possible to have fully navigable structures 
using only generic edges. 

Fig. 5: A generic edge, such as “any-return” can be applied to any node. 
Function calls handle dynamically assigning the edge’s source and target 
nodes on-demand. 

3.2 Input 

3.2.1 Abstracted navigation facilitates agnostic input 

Navigation rules in Data Navigator (see Figure 4 and Figure 5) are cre-
ated alongside the node-edge structure. Edges reference rules for navi-
gation. However, these rules are generic and agnostic to the specifics 



Fig. 6: An example navigation rule to move “left” can be called as a 
method by an event from any input modality. Some examples include 
common modalities such as touch swiping (A) or speaking “left” (B). This 
also includes advanced or future modalities such as gesture recognition 
(C) or touch-activated, fabricated interfaces (D). 

of input modalities and can be invoked as methods by virtually any 
detected user input event (see Figure 6). 

Navigation rules are objects with a unique name, ideally as a noun 
or verb in natural language that refers to a direction or location, a 
movement direction (a binary used to determine moving towards the 
source or target of an edge), and optionally any known user inputs that 
activate that navigation, such as a keyboard keypress event name. 

It is important for a system to abstract navigation events so that 
inputs can be uncoupled from the logic of Data Navigator. This allows 
higher level software or hardware logic to handle input validation while 
Data Navigator is just responsible for acting on validated input. 

Later in our first case example (Section 4.1), we demonstrate an 
application that handles screen reader, keyboard, mouse and touch 
(pointer) swiping, hand gestures, typed text, and speech recognition 
input. Abstract navigation namespaces can be called by any of these 
input methods. 

Additionally, since navigation rules are flexible, end users can also 
supply their own key-bind remapping preferences or input validation 
rules if developers provide them with an interface. 

Because calling a navigation method is abstract, users can even sup-
ply events from their own input modalities as long they have access to 
either a text input interface or access to Data Navigator’s navigation 
methods. Our demonstration material (in Section 4.1) also includes 
handling for DIY fabricated interfaces, which are important in accessi-
bility maker spaces. We chose a produce-based interface [29], since it 
was an easy and low cost proof of concept. 

We believe that enabling agnostic input provides a rich space for 
future research projects. In addition, browser addons and assistive 
technologies could both leverage this flexible interface for end users. 

3.2.2 Discrete, sequential input opens new avenues 

The keyboard interface is considered foundational for many assistive 
devices, which leverage this technology for discrete, sequential, non-
pointer navigation and interaction [43]. Desktop screen readers are the 
most common example of an assistive technology device that leverages 
the keyboard interface, however single or limited button switches, sip-
and-puff devices, on-screen keyboards, and many refreshable braille 
displays do as well. Support for the keyboard interface by default in 
turn provides all discrete, sequential input devices with access as well. 

However by basing Data Navigator’s foundational infrastructure on a 
keyboard-like modality, this also provides designers and developers new 
avenues to imagine how existing direct, pointer-based, or continuous 
inputs can map to discrete, sequential navigation experiences. 

For example, with mobile screen readers this already happens: screen 
reader users swipe and tap on their screen to sequentially navigate, but 
the exact pixel locations of their swiping and tapping generally does 
not matter. Their current focus position is discrete and determined by 
the screen reader software. 

Data Navigator therefore allows for many new possibilities. One 
possibility is that sighted mouse and touch users may now also swipe 

Fig. 7: An example of how navigation within Data Navigator could use 
semantic nodes as hyperlinks to provide access to other areas in an 
application. Alabama has a child node “Counties” which is a semantic 
HTML link element pointing to a table of counties, outside of Data Navi-
gator’s graph structure. A link is provided to return. 

their way through dense plots or use small interfaces (such as on mobile 
devices) that may otherwise be too hard to precisely tap. Data Naviga-
tor optionally removes the accessibility barriers sometimes posed by 
precision-based input in visualizations. 

Data Navigator does not have to be in conflict with precision-based 
input, either. A discrete, sequential navigation infrastructure can be 
used in tandem with precision-based pointer events as well as instant 
access when coupled with voice commands and search features. 

3.3 Rendering 

Fig. 8: A. The data specified for a node with a reference to separate data 
that is used to render that node. B. The node will render as a path at 
the specified Cartesian coordinates. C. This rendered node may then be 
placed over a visual. 

3.3.1 Flexible node semantics provide freedom 

Nodes in Data Navigator are semantically flexible. This is because the 
marks in a data visualization may represent many things, that are either 
dependent on the data or the user interface materials. 

Since our toolkit implementation is in JavaScript and HTML, our 
map example from Figure 3 might use image semantics for states, 



Fig. 9: A. A raster (png) visualization of a stacked bar chart showing how 4 English teams performed across 3 major trophy contests. B. An example 
navigation schema that allows children nodes to have 2 parents (two tree structures intersecting), one for contests and one for teams. C. An example 
of Data Navigator’s navigation logic abstraction, which allows edge types to have programmatic sources, targets, and rules, such as a single rule that 
gives all nodes a edge to exit the visualization. D. An instantiation of the schema, showing all corresponding rendered nodes and their edge types 
according to the schema design and navigation rules. 

alongside a description of the data relevant to that node. However since 
semantics are flexible in this way, Data Navigator could also be used to 
integrate into a larger ecosystem, with nodes rendered as hyperlinks to 
tables or other elements such as in Figure 7. 

The concept of using node-edge graphs can even extend to have 
“nodes” that are entirely different parts of a document or tool, as well 
as integrated into the explicit structure provided by Data Navigator. In 
some accessibility toolkits, nodes are geometries without functional 
semantics [31] or list items nested within lists [1]. But in Data Naviga-
tor, nodes can semantically be buttons, links, or any HTML element. 
Interactive data visualizations sometimes demand more flexible node 
semantics than geometries or lists. 

3.3.2 Loose-coupling to visuals enables expressiveness 

One of the most significant technical limitations of existing data visual-
ization toolkits with regards to accessibility is that they rely on visual 
substrate, or visual materials, in order to produce data visualizations. In 
the case of static, raster images such as png files or WebGL and canvas 
elements on the web, there are no interface properties at all exposed to 
screen readers for programmatic exploration and interaction. 

If raster images are used, they generally cannot be changed after 
rendering. However, according to web accessibility standards, elements 
must have a visual indicator provided when focused [40]. 

Since Data Navigator navigates using focus, an indicator must be 
rendered alongside the node semantics. But what is focused visually 
and where it is depends on different design needs. 

In Visa Chart Components, chart elements can be selected, so the 
focus indication is visible over the existing elements in the chart space. 
The design choice to have interactive visual elements located within a 
chart or graph is also common in other toolkits that provide accessible 
focus indication, such as Highcharts, PowerBI, and SAS Graphics 
Accelerator. 

However, some visualization toolkits create accessible structures 
entirely uncoupled from visual space [1], so focus indication is provided 
beneath or beside the chart, not over it. 

Due to the different ways that accessibility might be provided, Data 
Navigator enables developers to have complete control over the render-
ing of which focus elements they want, in what styling, and where. This 
can accommodate both un-coupled and visually-coupled approaches to 
focusing and more. 

Data Navigator’s focus is uncoupled by default and may even be 
used independent of any existing graphics at all. Rendering information 
may be passed to Data Navigator for it to render (like in Figure 8) or 
developers can provide their own rendered elements and simply use 
Data Navigator to move between them. 

Because of Data Navigator’s approach to rendering focusable ele-
ments, designers and developers can provide fully customized annota-
tions, graphics, text, or marks that may not be not part of the original 
visual space or elements. One example of this might be adding an 
outlined path to a collective cross-stack group of bars in a stacked bar 
chart (see Figure 8). 

Loose-coupling in this way provides robust flexibility to designers 
and developers to handle navigation paths and stories through a data 
visualization, even in bespoke or hand-crafted ways. 

3.3.3 On-demand node rendering is efficient 

Practitioners care about performance and so do users. Practitioner 
toolkits often focus on lazy-loading techniques where accessibility 
elements are rendered on-demand rather than all in-memory up front [1, 
9, 47]. 

Data Navigator’s nodes are rendered on-demand by default. Data 
Navigator only renders the node that is about to be focused by the user 
and after it is focused, the previously focused node is deleted from 
memory. This technique has advantages in cases where datasets are 
large or users have lower computational bandwidth available. However, 
there are cases where practitioners may want to render all of Data Navi-
gator’s structure in memory, such as server-side rendering or equivalent. 
Pre-rendering may be optionally enabled. 

4 CASE EXAMPLES WITH DATA NAVIGATOR 

We built example prototypes using our JavaScript implementation of 
Data Navigator, available open source at our GitHub repository. 

Our first two prototype case examples represent some of the most 
powerful parts of Data Navigator as a system while reproducing known 
and effective data navigation patterns from existing industry and re-
search projects. We provide a final case example as a co-design session 
that demonstrates how Data Navigator may be used to rapidly build 
new designs. 

https://github.com/cmudig/data-navigator


4.1 Augmenting a Static, Raster Visualization 

The first case example (shown in Figure 9) builds on an online 
JavaScript visualization library, Highcharts. Highcharts already pro-
vides relatively robust data navigation handling out of the box for screen 
reader, keyboard, and even voice recognition interface technologies, 
such as Dragon Naturally Speaking. However, these capabilities are 
only provided when the chart is rendered using SVG. Developers have 
several other rendering options available, including WebGL, which is 
significantly more efficient [15]. We wanted to demonstrate that Data 
Navigator can provide a navigable data structure even if the underlying 
visualization is a raster image. 

For our case example, we exported a png file using the built in menu 
of a sample stacked bar chart retrieved from their online demos [17]. 
We selected a stacked bar chart because it allows us to demonstrate how 
two tree structures may interact and share the same children nodes. 

We recorded the data and hand-created all of the geometries and 
their spatial coordinates using Figma, by tracing lines over the raster 
image’s geometries (see samples of the data and traced geometries 
in Figure 8). While this method was efficient for building an initial 
prototype, Section 4.2 engages deterministic methods for extracting 
and producing the nodes, edges, and descriptions required by Data 
Navigator automatically and at scale. 

The visualization we selected represents 4 English football teams, 
Arsenal, Chelsea, Liverpool, and Manchester United and how many 
trophies they won across 3 contests, BPL, FA Cup, and CL. 

We chose a schema design that arranged the contests to be navigable 
across one dimension of movement (up and down) while the teams 
are navigable across a perpendicular dimension of movement (left and 
right). This 2-axis style of navigation is used by Highcharts (when 
rendering as SVG) and Visa Chart Components. We also chose these 
directions because it is coincidental that their visual affordance is 
closely coupled with the navigation design (the x axis is ordered left 
to right and since the bars are stacked, up and down can move within 
the stack). These directions can also be applied to the axis categories 
and legend categories as well, moving left and right across the entire 
team’s stacks or up and down across the entire contest’s groupings. 

Using a keyboard, a user might enter this schema and navigate to 
the legend, where they could press Enter to then focus the legend’s 
first child, pictured in Figure 8. Pressing up or down navigates in a 
circular fashion among the contest groupings. Pressing Enter again 
then focuses the first child element of that contest, all of which are in 
the Arsenal group, since it is the first group along the x axis. A user can 
then navigate up, down, left, and right among children. Pressing L Key 
moves the user back up towards the contest while pressing Backspace 
moves the user up towards the x axis. The x axis and team groupings 
represent the second tree which intersects the first (the contests). 

Our first case example includes handling for additional input modal-
ities beyond screen readers and keyboards, including a hand gesture 
recognition model, swipe-based touch navigation, and text input (which 
can be controlled using voice recognition software). 

4.1.1 Discussion 

Our first case example demonstrates several of the most important capa-
bilities of Data Navigator, namely that practitioners can add accessible 
navigation to previously inaccessible, static, raster image formats and 
that a wide variety of input modalities are supported easily. 

Widely-used toolkits like Vega-Lite, Highcharts, and D3 [2] allow 
practitioners to choose SVG and canvas-based rendering methods. Data 
Navigator’s affordances help overcome the lack of semantic structure 
in canvas-based rendering, allowing developers to take advantage of its 
processing and memory efficiency. 

Notably in addition to these capabilities, the visual focus highlighting 
added was entirely bespoke (as in Figure 8) and the navigation paths 
through the visual were based on our design intentions, not an extracted 
view or underlying architecture such as render order. This demonstrates 
that our system provides a significant degree of freedom and control 
for designers and developers. 

As a final discussion point, the resulting visualization contains no 
automatically detectable accessibility conformance failures according 

to the W3C’s Web Accessibility Initiative’s accessibility evaluation tool, 
WAVE [44]. It is important for any technology developed to also meet 
minimum requirements for accessibility [10, 24, 25, 47], even when 
following best-practices and research. 

4.2 Building Data Navigation for a Toolkit Ecosystem 

Fig. 10: A. Various charts from Vega-Lite share the same general struc-
tures with each other when rendered using canvas (B) or SVG (C). D. 
With Data Navigator, we replicated the existing SVG navigation pattern 
(C) but used a canvas-based rendering for the visualization. E. We also 
improved the navigation scheme to nest marks within a mark group to 
allow users to skip them, if needed. 

Our second case example, shown in Figure 10, builds on Vega-Lite. 
As shown in Figure 2, Vega-Lite offers basic screen reader navigation 
but provides no navigation at all when rendered using canvas. 

While it might be a tedious design choice to allow every mark in 
a visualization to be serially accessible to screen reader users, we 
nevertheless set out to build a generic ingestion function that would 
take a Vega-Lite View object and deterministically recreate their existing 
SVG navigation structure in Data Navigator. This way users would 
have the same experience between SVG rendered charts and all current 
and future rendering options that Vega-Lite offers to developers. 

Notably, Vega-Lite does not explicitly manipulate the navigation 
order at all when rendering with SVG. ARIA is simply provided to 
allow screen reader users to access each mark in the visualization in 
the order the mark appears in the DOM (which is the order it was 
rendered). The legend appears after the marks in our schema for this 
reason because Vega-Lite renders the legend after marks. This choice 
of ordering is for visual reasons: z-axis placement is currently based 
on render order in SVG and Vega-Lite wants their legend visually on 
top of the rendered marks. 

In addition to mimicking their existing SVG navigation strategy, we 
also created a way to nest all of the marks within a group so that users 
can skip past them and drill in on-demand, which is a valuable pattern 
when dealing with situations where providing a mark-level fidelity of 
information may not be relevant to a user’s needs by default [35, 47]. 



In order to deterministically supply Data Navigator with accurate in-
formation about any given Vega-Lite visualization, we built 3 functions: 
one that takes a Vega-Lite View as input and extracts meaningful nodes, 
one that produces edges based on those nodes, and one to describe 
our nodes in a meaningful way for screen reader users. These generic 
functions technically work on all existing Vega-Lite charts, however 
some are more useful out of the box than others due to the type of 
marks involved. 

4.2.1 Discussion 

This case example demonstrates that ecosystem-level remediation and 
customization is not only possible for toolkit builders but Data Nav-
igator offers robust potential. Data Navigator’s structure, input, and 
rendering capabilities are all flexible and can be adjusted to suit the 
needs of a specific toolkit’s design and intended use. 

Many visualization libraries may not even provide screen reader 
accessible SVG using ARIA-based approaches but do have a consis-
tent underlying architectural pattern. Some libraries have a consistent 
method for converting data into visual formats, readable text labels, and 
interaction logic. Strong contenders would be visualization libraries 
popular in online, web-based data science notebooks like ggplot2 in R 
or matplotlib for Python, which typically only render rasterized pngs 
or semanticless SVG. 

Toolkits with consistent underlying architecture would allow toolkit 
developers, not just developers who use toolkits, to remediate and 
customize their navigation accessibility using a generic approach. 

Enabling accessibility at the toolkit level allows all downstream use 
of that tool to have better defaults, options, and resources available for 
building more accessible outcomes for end users. 

Many libraries and toolkits provide users with a level of functional 
defaults and abstract conciseness so that users don’t have to worry 
about low-level geometric considerations [31]. 

Data Navigator allows toolkits developers to also provide their users 
with abstractions and defaults for accessibility that make sense for their 
ecosystem. 

Despite our schema recreating a screen reader experience based 
on SVG (and improving it), Data Navigator’s additional features also 
apply: users are able to leverage a much wider array of input modalities. 

Vega-Lite provides many ways to make marks clickable and even 
perform complex actions using mouse-based input. While Data Navi-
gator does not engage accessible brush and drag-based inputs, it does 
provide keyboard-only access by default, which can be used to make 
events previously only accessible to mouse clicking available to many 
other technologies. This is an improvement over Vega-Lite’s SVG + 
ARIA rendering option. 

When measuring performance across test datasets containing 406 
and 20,300 data points in a scatter plot, Data Navigator increases 
initialization time by ∼0.45 to ∼1.5ms respectively. Our extraction 
functions specific to Vega-Lite increase initialization between ∼4.8 and 
∼8.5ms respectively. Given that our benchmark testing for Vega-Lite’s 
SVG rendering initialized in ∼1,800ms for 20,300 data points and 
canvas in ∼700ms, we do not anticipate that Data Navigator will have 
a negative impact on performance in most visualization contexts. 

4.3 Co-designing Novel Data Navigation Prototypes 

Fig. 11: Our material preparation process involved taking a reference 
(A), tracing it (B), and rendering it on a tactile display (C). 

Recent projects in accessible data navigation have involved extensive 
co-design work with people with disabilities, ranging on the magnitude 
of months with as many as 10 co-designers at a time [24, 25, 38, 47]. 

However many visualization experiences may be authored in smaller 
scales, with fewer designers, and less time such as the development 
of a prototype or demonstration of an emerging idea. In practical or 
industry contexts, co-design sessions (and design sessions in general) 
may be much shorter. The goal of these co-design sessions is simply to 
create an artifact with the artifact’s intended users. 

Since our paper is contribution towards practical outcomes, we 
simulated a light co-design session with the aim of producing low-
fidelity prototypes of novel data interaction patterns. 

4.3.1 Co-design Session Methods and Setup 

Fig. 12: A. A reference image from Penrose of a set diagram containing 
two sets intersecting. B. A diagram of our proposed structure, with three 
levels of information. 

Authors Frank Elavsky (sighted) and Lucas Nadolskis (blind) set 
out with the goal of developing screen-reader friendly prototypes that 
can explore geometric and mathematical models produced by the math 
diagramming tool Penrose [46]. 

Nadolskis is a neuroscience engineer who is a native screen reader 
user and uses both mathematical concepts as well as data-related tasks 
in his research. Elavsky proposed a series of possible math-based 
visualization types produced by Penrose to build prototypes for, and 
Nadolskis selected set and vector diagrams as the two worth exploring 
first. The justification for this selection is that understanding these two 
concepts is important for work in data science, programming, and more 
advanced math concepts. 

In particular we grounded the context of our contribution in a hypo-
thetical classroom setting, where a screen reader user who is a student 
will have access to the equations in both raw text and MathJax. We want 
to provide an experience that does not replace the existing resources 
screen reader users have to learn in classrooms but rather supplement. 

At our disposal for our co-design session was a Dot Pad [6], which 
is a refreshable tactile braille display. Our Dot Pad enabled Elavsky 
to produce something visual and then translate it into the display for 
Nadolskis. Similar to de Greef et al. [5], we used a tactile interface as 
an intermediary to help us get a shared sense of the meaningful spatial 
features of our figures. 

Elavsky started with a reference diagram and then traced a wide 
variety of every possible node that might be worth navigating to in the 
diagram (see Figure 11). 

We selected which nodes were most important in each diagram, how 
to navigate between them, and how we wanted to render their visuals 
and semantics. 

The selection of our problem space, scope of solutions, context 
of contribution, general discussion, and preparation of materials took 
approximately 12 hours of work over 2 weeks. The exploration of our 



prototype design space for our 2 prototypes took 1 hour. Building the 
prototypes took 2 hours. 

4.3.2 Creating a Navigable Set Diagram 

Our first prototype was a set diagram (see Figure 12). For our structure, 
we decided that it has 3 important semantic levels: the high level, the 
inclusion level, and the exclusion level. The inclusion level is first and 
the siblings are all sets or subsets that include other sets. The exclusion 
level is beneath and contains sets or subsets that are exclusive to the 
sets they belong to, which are accessed by drilling down from a set. 

Our schema design starts with a user encountering the root level (1) 
and may optionally drill in to the first child of the next level (2) using 
the Enter key. The user may navigate siblings at this level using right 
and left directions, but this level is not circular (like in Figure 9) to 
maintain the spatial relationships. The user may drill in on either set 
again to view the non-intersecting portion of that set. Any node can 
drill up, towards the root, using Escape or Backspace. 

4.3.3 Creating a Navigable Parallel Vectors Diagram 

Fig. 13: A. A reference image from Penrose of a parallel vectors diagram. 
B. A diagram of our proposed structure, with two main sub-categories of 
information: understanding the vectors and their parallels. 

Our second prototype was a parallel vectors diagram (see Figure 13). 
For the structure of this diagram we created a first level group that 
contains each vector and vector sum. The sibling to this grouping is 
another group which organizes sub-equations related to calculating 
each parallel vector. The sub equations each contain children that pair 
the sub equation with the vector it is parallel to. 

Similar to Figure 12, this figure maintains spatial relationships along 
the x dimension, does not have circular navigation, and allows drilling 
in and out. 

4.3.4 Discussion 

After our co-design sessions, our visual materials and navigation struc-
tures were used in the creation of functional prototypes. We additionally 
hand-crafted the descriptions and semantics for each node. 

Accessibility work often takes a long time, from co-design to build-
ing to validation. But we believe that a well-articulated and useful 
design space, with tools that provide expressiveness and control over 
the dimensions of that design space, can improve how this work is done. 
The above case example demonstrates how builders who are thinking 
about data navigation design can rapidly scaffold prototypes for use in 
Data Navigator. 

In particular, Data Navigator’s design as a system gave our co-design 
sessions vocabulary correspondence. Data Navigator’s language helped 
us focus on the nodes, edges, and navigation rules for our structure 
while we also explicitly discussed the rendering details of coordinates, 
shapes, styling, and semantics for each node. The vocabulary of our 
design space directly corresponded with code details required to create 
a functional prototype. 

We note that this co-design work is not intended to contribute a 
validated set of designs. Rather, our contribution with this case ex-
ample is to demonstrate that within the larger ecosystem of a research 

venture, Data Navigator is an improvement over designing and building 
navigable structures from scratch. 

5 LIMITATIONS AND FUTURE WORK 

Data Navigator is a technical contribution, a system designed for ap-
propriation [7] and adaptation [45] in different applied contexts. It is, 
as Louridas writes, a technical material: a technology that enables new 
and useful capabilities [23]. While beyond the scope of the current 
paper, a critical next step for future work is to conduct separate stud-
ies with both practitioners and end users to evaluate Data Navigator’s 
affordances. 

Unlike toolkits that provide an end-to-end development pipeline for 
accessible visualization, Data Navigator serves as a low-level building 
block or material (like concrete). As such, one potential limitation 
of the framework is that it can be used to build both curbs (which 
are inaccessible) as well as ramps and curb-cuts (which may be more 
broadly accessible). 

Even when building more accessible curb-cuts, we stress the im-
portance of actively involving people with disabilities in the design 
and validation of new ideas, in line with prior work [24, 25, 28, 47]. 
For example, while our first two case examples replicate co-designed 
and validated existing work, our third case example’s co-designed pro-
totypes would need to be validated with relevant stakeholders before 
wider implementation. Our system does not guarantee any sort of 
accessibility on its own. 

The diverse array of modalities supported by Data Navigator opens 
an immediate line of future work in engaging people with a correspond-
ingly diverse set of disabilities. While recent explorations into acces-
sible data visualization have been inspiring, this trend has primarily 
focused on the experiences of people with visual disabilities [10,21,27]. 
More research should be conducted with other populations, particularly 
people who leverage assistive technologies beyond screen readers, to 
understand how interactive data visualizations can be better designed 
to serve them. 

Finally, there are significant opportunities to improve the effi-
ciency of our approach, including developing deterministic and non-
deterministic methods to generate node-edge data and navigation rules 
from a visualization. Ma’ayan et al. stress in particular that reducing 
tedious complexity can contribute to the success of a well-designed 
toolkit [26]. Future work should identify areas where graphical inter-
face tools or higher-level specifications can improve the experience of 
working with Data Navigator. 

6 CONCLUSION 

Practitioners at large continue to produce inaccessible interactive data 
visualizations, excluding people with disabilities. We believe that the 
burden of remediation first starts with the developers who build and 
maintain the toolkits that practitioners use. 

However, the challenges faced by toolkit builders are significant. 
Most toolkits lack an underlying, navigable structure, support for broad 
input modalities used by people with disabilities, and meaningful, 
semantic rendering. 

To engage these limitations we present Data Navigator, a technical 
contribution that builds on existing work towards a more generalizable 
accessibility-centered toolkit for creating data navigation interfaces. 
Data Navigator is designed for use by practitioners who both build and 
use existing toolkits and want a tool to make their data visualizations 
and interfaces more accessible. 

We contribute a high-level system design for our node-edge graph-
based approach that can be used to build data structures that are nav-
igable by a wide array of assistive technologies and input modalities. 
Data Navigator is generic and can scaffold list, tree, graph, relational, 
spatial, diagrammatic, and geographic types of data structures common 
to data visualization. 

Our system is designed to encourage both remediation of existing 
inaccessible systems and visualization formats as well as help scaffold 
the design of novel, future projects. We look forward to further research 
that explores the possibilities enabled by Data Navigator. 
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