
Constraint Programming
or Answer Set Solving in Practice

Dominik Moritz, slides based on work from Torsten Schaub (Uni Potsdam), Thomas Eiter (TU Wien), Vladimir Lifschitz (UT Austin)

Goal: 

Solve hard computational programs with
a simple and intuitive modeling language.

Overview
Motivation

Basics

Answer Set Programming

Practical Examples

Looking Behind the Curtain

Motivation

Declarative Problem Solving
"What is the problem?" versus "How to solve the problem?"

Declarative Problem Solving
"How to solve the problem?" versus "What is the problem?"

Programming

Executing

Declarative Problem Solving
"How to solve the problem?" versus "What is the problem?"

Approaches to Constraint Solving
Theorem Proving based approach (e.g. Prolog)

1. Provide a representation of the problem

2. A solution is given by a derivation of a query

Model Generation based approach (e.g. SATisfiability testing)

1. Provide a representation of the problem

2. A solution is given by a model of the representation

Answer Set Programming (ASP)
• ASP is an approach to declarative problem solving, combining

• a rich yet simple modeling language

• with high-performance solving capacities

• ASP allows for solving all search problems in NP (and NPNP) in a uniform
way

• Stable model semantics [Lifschitz 1988]

Use Cases for ASP
Combinatorial search problems in the realm of P, NP, and NPNP (some with substantial
amount of data), like

• Automated planning

• Code optimization

• Database integration

• Decision support for NASA shuttle controllers

• Model checking

• Music composition Product configuration

• Robotics

• Systems biology System design

• Team building

• and many many more…

Basics

Terminology
Atoms or Facts are elementary propositions (factual statements) that may
be true or false.

Literals are atoms a and their negations not a.

Constants or predicate symbols: x, y, z, …

Variables: X, Y, Z, …

Function symbols: f, g, h, …

Rules are expressions of the form: head ← body, or more precisely

a ← b1, . . . , bm, not c1, . . . , not cn.

Constraints are rules with an empty head.

Notation

Logic 101

Logic 101
a → b = ~a ⋀ b

→ a = F → a = a

a ← = a

← a = ~a

← ~a = a

Answer Set Programming

ASP vs Prolog
ASP features "pure" declarative programming
• the order of program rules does not matter;

• the order of subgoals in a rule does not matter;

• termination is not an issue.

Nondeterminism in ASP: Possibility to make guesses

Prolog uses a top-down approach to solving (with unification).

Unification
?- mia = X

X = mia

?- f(A,B) = f(1,2)

A = 1, B = 2

?- k(s(g), Y) = k(X, t(k)).

X = s(g), Y = t(k)

on(a,b).
on(b,c).
above(X,Y) :- above(X,Z), on(Z,Y).
above(X,Y) :- on(X,Y).

?- above(a,c).
Fatal Error: local stack overflow.

Answer Sets (Stable Models)
Answer sets are stable models. Stable models are models that are justified and
minimal.

Defined as a model that satisfies Cn(PS) = S. (Cn = consequence)

PS is the reduct of S

1. delete each clause with some ~Ci such that Ci ∈ S

2. delete each ~Ci (such that Ci ∉ S)

A program can have no, one, or multiple stable models.

Constructive flavor of ASP. Negative literals must only be true, while positive ones
must also be provable. This excludes "circular derivation".

Examples of Answer Sets

Only one model: {a}. No stable model.

Examples of Answer Sets

Examples of Answer Sets
p :- not q.
r :- p.
s :- r, not p.

{p} is not an answer set because it is not a model

{r, s} is not an answer set because r is included for no reason

{p, r} is a model and answer set (it's the only one)

Examples of Answer Sets
p :- q.
p :- r.
q :- not r.
p :- not r.

There are two models: {p, q} and {p, r}. Only the first one is stable.

Note that Prolog cannot derive p.

Practical Examples

Example: Roads out of Berlin
road(berlin,potsdam).
road(potsdam,werder).
road(werder,brandenburg).
road(X,Y) :- road(Y,X).

blocked(werder,brandenburg).

route(X,Y) :- road(X,Y), not blocked(X,Y).
route(X,Y) :- route(X,Z), route(Z,Y).

drive(X) :- route(berlin ,X).

#show drive/1.

Example: Roads out of Berlin
$ clingo roads.lp
clingo version 5.2.2
Reading from roads.lp
Solving...
Answer: 1
drive(potsdam) drive(berlin) drive(werder)
SATISFIABLE

Models : 1
Calls : 1
Time : 0.002s (Solving: 0.00s 1st Model: 0.00s Unsat: 0.00s)
CPU Time : 0.002s

Basic Components
Basic rules

Integrity constraints

Choice rules

Cardinality rules

Weight rules

Basic Rules
Facts like

road(werder,brandenburg).
road(X,Y) :- road(Y,X).

Integrity Constraints
Remember logic 101. Right side implies false -> right side must be false.

Read: "it cannot be the case that"

:- edge(3,7), color(3,red), color(7,red).

Choice Rules
Lets us express a choice that the solver can make.

{ buy(pizza), buy(wine), buy(corn) } :- at(grocery).

Problem Modelling
Principle: Generate, Define, Test (, Optimize)

In other words: describe the search space, describe what is invalid, the
remainder of the search space the solution. I think this is more natural than
constructing what is valid (as done in Z3 etc).

Example: XKCD

Example: XKCD
#const total = 1505.

#const n = 10.
amount(0..n).

food(mixed_fruit;french_fries;side_salad;hot_wings;mozzarella_sticks;samples_place).

price(mixed_fruit,215).
price(french_fries,275).
price(side_salad,335).
price(hot_wings,355).
price(mozzarella_sticks,420).
price(samples_place,580).

prices(P) :- price(_, P).

% each food has exactly one amount
1 { food_amount(Food, Amount) : amount(Amount) } 1 :- food(Food).

% prices sums to total
total = #sum{ Price*Amount,F:food_amount(F, Amount) : price(F, Price), prices(Price), amount(Amount) }.

#show food_amount/2.

Example: XKCD
$ clingo examples/xkcd.lp 0
clingo version 5.2.2
Reading from examples/xkcd.lp
Solving...
Answer: 1
food_amount(mixed_fruit,7) food_amount(french_fries,0) food_amount(side_salad,0)
food_amount(hot_wings,0) food_amount(mozzarella_sticks,0) food_amount(samples_place,0)
Answer: 2
food_amount(mixed_fruit,1) food_amount(french_fries,0) food_amount(side_salad,0)
food_amount(hot_wings,2) food_amount(mozzarella_sticks,0) food_amount(samples_place,1)
SATISFIABLE

Models : 2
Calls : 1
Time : 0.005s (Solving: 0.00s 1st Model: 0.00s Unsat: 0.00s)
CPU Time : 0.004s

Example: Towers of Hanoi
%%%%%%%%%%
% Instance

peg(a;b;c).
disk(1..4).
init_on(1..4,a).
goal_on(1..4,c).
moves(15).

%%%%%%%%%%
% Generate

% at each point T in time (other than 0), exactly one
% move of a disk D to some peg P must be executed.
{ move(D,P,T) : disk(D), peg(P) } = 1 :- moves(M), T =
1..M.

%%%%%%%%
% Define

% projection
move(D,T) :- move(D,_,T).

% capture state of towers

% start
on(D,P,0) :- init_on(D,P).
% move
on(D,P,T) :- move(D,P,T).
% inertia
on(D,P,T+1) :- on(D,P,T), not move(D,T+1), not moves(T).

% a smaller disk, with a number greater than D-1, is located on a peg P
blocked(D-1,P,T+1) :- on(D,P,T), not moves(T).
% propagate to larger disks
blocked(D-1,P,T) :- blocked(D,P,T), disk(D).

%%%%%%
% Test

% a disk D must not be moved to a peg P if D-1 is blocked at time point T
:- move(D,P,T), blocked(D-1,P,T).

% a disk D cannot be moved at time point T if it is blocked by
% some smaller disk on the same peg P
:- move(D,T), on(D,P,T-1), blocked(D,P,T).

% the goal situation, given in an instance, must be achieved at
% maximum time point M
:- goal_on(D,P), not on(D,P,M), moves(M).

% for every disk D and time point T, there is exactly one peg P
% such that on(D,P,T) holds
:- { on(D,P,T) } != 1, disk(D), moves(M), T = 1..M.
% note that this is already implied but adding it improves performance

%%%%%%%%%
% Display
#show move/3.

Example: Graph Coloring
country(belgium;denmark;france;germany;netherlands;luxembourg).

% 3 color is not enough
% color(red;green;blue).
color(red;green;blue;white).

arc(france,belgium;france,luxembourg;france,germany).
arc(luxembourg,germany;luxembourg,belgium).
arc(netherlands,belgium).
arc(germany,belgium;germany,netherlands;germany,denmark).

neighbor(X,Y) :- arc(X,Y).
neighbor(Y,X) :- arc(X,Y).

% Ensure that each country has exactly one color,
1 {color(X, C) : color(C) } 1 :- country(X).

% Two neighboring countries cannot have the same color.
:- color(X1, C), color(X2, C), neighbor(X1,X2).

% symmetry breaking
:- color(germany, red).
:- color(france, blue).

#show color/2.

Example: Jobs
There are four people: Roberta, Thelma, Steve, and Pete.

Among them, they hold eight different jobs.

Each holds exactly two jobs.

The jobs are chef, guard, nurse, clerk, police officer (gender not implied),

teacher, actor, and boxer.

The job of nurse is held by a male.

The husband of the chef is the clerk.

Roberta is not a boxer.

Pete has no education past the ninth grade.

Roberta, [and] the chef, and the police officer went golfing together.

Question: Who holds which jobs

Frame: https://pastebin.com/raw/sYAJu7F0

https://pastebin.com/raw/sYAJu7F0

Example: Jobs (Answer)
person(roberta;thelma;steve;pete).
job(chef;guard;nurse;clerk;police_officer;teacher;actor;boxer).

male(steve;pete).
female(roberta;thelma).
require_higher_education(nurse;police_officer;teacher).

% just one person has a specific job
1 { has_job(P,J) : person(P) } 1 :- job(J).

% Each person has exactly 2 jobs
2 { has_job(P,J) : job(J) } 2 :- person(P).

% The job of nurse is held by a male.
:- person(P), has_job(P,nurse), not male(P).

% The husband of the chef is the clerk.
:- has_job(P,chef), has_job(P, clerk).
:- has_job(P,clerk), not male(P).
:- has_job(P,chef), not female(P).

% Roberta is not a boxer.
:- has_job(roberta, boxer).

% Pete has no education past the ninth grade.
:- has_job(pete, J), require_higher_education(J).

% Roberta, [and] the chef, and the police officer went golfing together.
:- has_job(roberta, chef).
:- has_job(roberta, police_officer).
:- person(P), has_job(P, chef), has_job(P, police_officer).

% From the name of the job (actor: male)
:- has_job(P,actor), not male(P).

#show has_job/2.

Strong Negation
cross :- not train.
Cross in the absence of knowledge about whether there is a train coming.

cross :- -train.
Cross if we have evidence that there is no train.

Looking Behind the Curtain

ASP Solver
Grounding Step
• Given a program P with variables, generate a (subset) of its grounding which has the same models

• program: gringo

Model Search
• Candidate generation (classical model)

• Model checking (stability!)

• Similar to (Davis-Putnam-Logemann-Loveland) DPPL algorithm for SAT + CDCL (conflict driven

clause learning) with backjumping

• program: clingo

clingo = gringo + clasp

ASP Solver

